Our impact
Our aim is to foster first class research within a culture of innovation and application supported by an effective translational infrastructure to enable successful knowledge transfer. This thereby ensures, for example, scientific advancement, the education and training of students, and promotes inward investment benefiting of the University and the wider community.
Our world-class facilities together with ongoing research activities have produced successful interactions with industry as well as highlighted commercial opportunities. This also benefits the wider community through outreach activities, such as staff representations at the Royal Society Summer Exhibition, Science Week and interactions with local schools.
We constantly review our activities; continuing to promote cutting edge research through which excellence in education, training and outreach activities can be achieved.
Research success
Our academic staff continue to make outstanding contributions to the research community. A reflection of the impact of the department's research quality is the publicity it has recently received. Notable examples include:
Pioneering zebrafish research provides breakthrough in epilepsy treatments
The prospect of developing new treatments for epilepsy sufferers is a step closer due to a pioneering discovery from Dr Vincent Cunliffe at the department of Biomedical Science. Researchers at the MRC Centre for Developmental and Biomedical Genetics (CDBG) screened a collection of 2,000 biologically active compounds to identify molecules that suppressed epileptic seizures in two day old epileptic zebrafish. Within this collection, 46 compounds – including some which are used to treat infectious, psychiatric and inflammatory disorders – were found to exhibit anticonvulsant activity and could represent starting points for the development of new drugs for treating epilepsy. Read more on this story.
Human embryonic stem cells could help to treat deafness
A cure for deafness is a step closer after Centre for Stem Cell Biology member Professor Marcelo Rivolta used human embryonic stem cells to treat a common form of hearing loss. In research funded by the Medical Research Council and leading UK research charity, Action on Hearing Loss, experts from the department of Biomedical Science developed a method to turn human embryonic stem cells into ear cells. They then transplanted them into deaf gerbils, obtaining a functional recovery that, on average, was of around 46 per cent. The improvement was evident about four weeks after administering the cells. As well as proving that stem cells can be used to repair damaged hearing, it is hoped the breakthrough – published in the journal Nature – will lead to new treatments and therapies in the future. Read more on this story.
Fruit flies expand understanding of how brains work
Scientists at the department of Biomedical Science have gained a new insight into how our brains work after studying the inner workings of fruit fly equivalents. The new research, led by Professor Miko Juusola, investigates the parts of the flies' brains – which work just like our human equivalents but are much less complicated – that enable them to perceive the visual world in detail. The study, which is published in the journal Science, set out to challenge a 30-year old belief that in insect brains colour and motion information are processed independently. Read more on this story.
Major new lead for Parkinson's treatment
A major lead for potential new treatments for Parkinson's has been discovered by at the department of Biomedical Science by Dr Alex Whitworth's and his research team within the MRC Centre for Developmental and Biomedical Genetics (CDBG). The study identified a pathway inside nerve cells that could be stimulated to protect the dying cells affected by Parkinson's. Using both fruit fly models and skin cells from people with Parkinson's, the researchers identified a common pathway inside the cells that can be stimulated to prevent cell death in inherited forms of the condition. Finding new drugs that can interfere with these means that we could target these pathways and essentially halt, or even prevent, the death of the cells. Read more on this story.
