Research in Structural Biology
X-ray protein crystallography
NMR spectroscopyProtein : nucleic acid interactions.The structural analysis of interactions between nucleic acids and proteins will enable the understanding of fundamental molecular processes by which proteins manage the genetic information encoded in DNA and RNA. Protein dynamicsUnderstanding the kinetic and thermodynamic parameters that govern the folding, stability and conformational flexibility of proteins is vital if we are to offer explanations and ultimately design therapeutic approaches for the protein folding diseases. Molecular Recognition and CatalysisOur work is aimed at understanding the detailed physical and stereochemical events that drive catalytic processes at the active sites of protein and nucleic acid enzymes including the role of dynamics in catalysis, the design of enzyme inhibitors and the molecular basis of the catalytic properties of key enzymes. |
Electron microscopyBioinformaticsFacility Managers
BioinformaticsIn close collaboration with colleagues in the Department of Information Studies we are involved in the development of new computational methods for structure analysis, drug design, and the understanding of molecular evolution. Structural genomics, drug design and diseaseWe are involved in structural genomics initiatives aimed at determining the structures of key proteins which are the targets for the development of novel antibiotics. Membrane proteinsMany of the most important biological processes occur at the interface between the cell and its external environment- the cell membrane. Knowledge of the structures of membrane proteins is therefore of crucial importance in medicine, as aberrant function in these types of molecules lead to many disease states. |
