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We live in an uncertain world

® Uncertain customer demand
® Uncertain travel times
® Volatile stock market

® Manufacturing tolerances
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Two forms of uncertainty

® Aleatoric uncertainty: statistical uncertainty,
nothing an experimenter can do about

® Epistemic uncertainty: due to things we could in
principle know, but in practice don’t. Can be
reduced by gathering more data or refining
models
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Outline

® Uncertainty about preferences
® Uncertainty as additional objective
® Optimising noisy objectives

e expected performance

® Wworst case performance

® Summary
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Multi-objective Optimization =
Single-objective optimization
+ uncertainty about user preferences
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Perfect knowledge of preferences

® would allow us to rank all solutions

® problem would effectively be a single objective
problem
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Uncertain user preferences

® They have not yet been expressed

® They are difficult to express in closed form
® User has not formed an opinion yet

@ User is inconsistent

® There may be multiple users
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Different degrees of uncertainty

® No knowledge 2 1

® Monotonic
-> Pareto dominance

® Linear

® Probability o
distribution
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Evaluating Pareto fronts

® A probability distribution over utility functions
allows us to quantify the quality of a solution
set: expected utility of the chosen solution

EU(X)) = /EU P(u) glea%u(x)du
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M a rgi n a I Uti I ities [Branke, Deb, Dierolf, Oswald 2004]

® Assume linear utility function

® Evaluate each solution with expected loss of
utility if solution would not be there

p

X

X

marginal utility
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F i n d i ng kn ees [Branke, Deb, Dierolf, Oswald 2004]

Solution where a small improvement in either objective

will lead to a large deterioration in the other
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Criterion 2

Non-uniform distributions eanke 2008
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Learning preferences

® User’s rankings of pairs of solutions may restrict
the space of compatible utility functions

P(N)] o PO

q Nj)refe rred
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N E IVI 0 [Branke, Greco, Slowinski, Zielniewicz, 2010]

® Additive monotonic utility function

U(a) = uilfi(a)

® Pairwise comparisons to restrict set of utility
functions compatible with preference
information

® A is necessarily preferred over B if there is no
compatible utility function that would prefer B
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Uncertainty as
additional objective
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In many applications,
uncertainty is a criterion

® Finance

® maximize return

® minimize risk (variance, VaR)

® Engineering .
® maximize performance

e minimize probability of failure / maximize reliability
® Military

® Mminimize cost

® maximize probability of success
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Portfolio optimisation

Min V(z) = z!Q«x
Max FE(x
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Possible challenge:
how to evaluate uncertainty

® Monte Carlo sampling

® Expected performance in local fitness space (use
metamodels for estimation)

® Distance to constraint (reliability-based
optimization)
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Optimal function value

Reliability-based Optimization

[Deb, Gupta, Daum, Branke, Mall, Padmanaban 2009]

® Use distance from constraints as additional
objective

® MOQO allows to show possible trade-off

100 T

80
60 -

40

20

—40

1

Global optimum

-400 =300

| | |
-200 -100 0100 200 300

Reliability Coefficient (beta’r)

Optimal Function Value

Warwick Business School

80 _________ ||. _____ r r r I _I_II ___________________
70 $=0.053(52.1%) Global optimum
R [ 7]
|
60 F Y 053(702%) a
......... o SRt SOOI
50 - %0.65(74.2%) Local optimum ]
+1.09(86.2%)

40 : ' .
300 .
: Qo .. 2.96 (99.8%)

20 B | n

| 4.02(99.997%
10 | | -
| Co
0F |, Transition of optimum (0.7 (75.8%)) 4979
| / (99.99996 %)
-10 L | 1 | 1 | 1 L | L
O 05 1 15 2 25 3 35 4 45
Reliability Coefficient (beta’r)
wbs.ac.uk

5



Reliability - Innovization

® Car side impact problem
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Noisy objective functions
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How to compare “clouds”

f2

f1
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How to compare “clouds”
1 1

!

* |s rotation important?
* |slocation important?

Do we need to be able to scale objectives to decide
on robustness?

Warwick Business School whbs.ac.u



For now

ldentifying the solutions with the best expected
objective values

.
» e

f2

f1
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Possible errors

® A non-dominated solution is not
recognized as such and thus not
presented to the user.

® A dominated solution appears to
be non-dominated.

® The best solution is recognized as
being non-dominated, but another
solution erroneously appears more
attractive to the user.
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Expected opportunity cost
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Sequential sampling to minimize
expected opportunity cost

O]

®

O]

O]
O]

®

Given: set of solutions,
computational budget 2.1

Goal:
minimize opportunity cost

The more samples, the more

accurate the fitness estimate
Samples are computationally expensive

Start with few samples, then allocate more
where needed

Optimal Computing Budget Allocation

f1
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i M OC BA [Branke&Gamer, 2007]

® Idea: User is represented by probability
distribution over A

® Probability distribution is used to calculate
overall EOC and estimate value of additional

sample

® W.l.o.g., we assumed linear utility functions
U(x)=Af,(x)+(1-A)f,(x) and a uniform probability
distribution over A
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Expected Opportunity Cost

® For a given A and two solutions, EOC can be
calculated based on probability distribution

o
where s is observed
FO(C = / (33 — S)Qb(x)dx utility difference and
X

=S ¢ is prob dist for difference

® Extension to more than 2 solutions by Bonferoni
bound (sum of pairwise EOCs)

® Extension to many A by summing up over 1000
equally-spaced A

® Approximate effect of additional sample by
effect on variance
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IMOCBA

® Initialize: Sample each system n, times

® WHILE budget not exhausted

e Calculate OEEOC, the overall estimated EOC if
system i receives another sample based on
probability distribution P(\) of user’ s utility function

* Actually sample system i with i =argmin{OEEOC }
e Update sample statistics
® User selects system with best perceived utility
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Efficiency (1)
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Worst-case optimisation
[Branke, Avigad, Moshaiov 2008]
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What if DM is not risk neutral?

® Stochastic dominance P(A>x)> P(B>x) for all x
b 4(x) < Pp(x)forallx

® Quantiles
® Value at risk
® Worst case

® But: all these are not defined in the case of
multiple objectives!
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Quantiles in MOO [Bosman 2009]
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Worst case in MOO

® Which scenario is worst case depends on the
user’s preferences

f2

v

f1
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Total dominance

® Each scenario of A dominates each scenario of B
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Worst-case dominance
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Worst-case dominance

® A solution A dominates a solution B with respect to
worst case, if the non-dominated set of A U B with

respect to the inverted (maximization) problem only
contains representatives of solution B

A A

ALA_‘ A?_A_.

A A

A dominates B A and B are non-dominated

A Solution A @ Solution B
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How to rank non-dominated

solutions?
Three important aspects:

®e
@
Diversity A“X.
A oo
Spread Ag
A >
Convexity B4
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First approach: 6-Indicator

® Solution fitness is distance a solution can be
moved simultaneously in all objectives before it
becomes dominated, or, if it is dominated, the

minimal distance it has to be moved until it
b‘_ecomes non-dominated ‘_
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Second approach:
Marginal expected utility

® Assume linear utility function u=-(Af +(1- A)f,)

® Calculate marginal utility by numerical integration over
A\, assuming uniform distribution in [0:1]

® For each A and solution i, let w(A,i) be the worst case
utility

® To calculate marginal utility u ":

e Set marginal utility u (i) of all solutions to zero

e For each A find best and second best solution i* and i’
o u'(i*) <—u’(i*)+w(Ai*)-w(Ai’)
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Marginal expected utility (2)

lllustration:
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Example Diversity
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® O indicator:

e A35
e BO.5
e C0.5

® Marginal utility:
e A100
e BO
e C12
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Example Convexity

® O indicator:

8 - ® . e AO
o A e B1]
8 [ ® Marginal utility:
(e} B.
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objective 1
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Example Spread

Marginal utility
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Artificial test problem
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Expected utility

60

] 5 measure
55 | ¢ marginal utility ------- _
' averaglng ................
50 .
a 45 — =
'S 40 - -
8
o 35| -
Q.
x
Y30 - -
25 -
o0 L T e e -
15 | | |
0 50 100 150 200

Generation

Warwick Business School whbs.ac.uk




Summary
® Different aspects of uncertainty

e user preferences
e uncertainty as additional objective
e uncertainty in objective function values

® Many concepts from single-objective
optimisation don’t translate to multiple
objectives — what do we want to achieve?

® Notion of probability distribution over utility
functions seems quite useful
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Special session

Multiobjective optimization and decision making
under uncertainty

17-21 June 2013
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Any uncertainties left?
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