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Cone Based Hypervolume Indicator
Cone Dominance

What are (convex, pointed) cones?

Definition (cone)

A subset C ⊆ Rm is called a cone, iff αp ∈ C for all p ∈ C and
for all α ∈ R, α > 0.

Definition (convex cone)

A cone C in Rm is convex, iff αp(1) + (1− α)p(2) ∈ C for all
p(1) ∈ C and p(2) ∈ C and for all 0 ≤ α ≤ 1.

Definition (pointed cone)

A cone C in Rm is pointed, iff C ∩ −C ⊆ {0}.
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Cone Based Hypervolume Indicator
Cone Dominance

What are cone orders?

Definition (Minkowski sum)

Let A and B denote sets of vectors in Rm. Then

A⊕ B = {a + b | a ∈ A and b ∈ B}.

Example for the Minkowski sum.
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Cone Based Hypervolume Indicator
Cone Dominance

What are cone orders?

Definition (cone order)

Let C denote a pointed convex cone:

x1 �C x2 ⇔ x2 ∈ {x}1 ⊕ C .

Pareto order is a special case of a cone order.
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Cone Based Hypervolume Indicator
Cone Dominance

Minimal sets

Lemma (Minima for acute cones)

C ⊂ CPareto ⇒ ∀A ⊂ Rm : MinimaPareto(A) ⊇ MinimaC (A)

Lemma (Minima for obtuse cones)

C ⊃ CPareto ⇒ ∀A ⊂ Rm : MinimaPareto(A) ⊆ MinimaC (A)
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Cone Based Hypervolume Indicator

Cone Based Hypervolume Indicator (CHI)

Definition (Cone-based hypervolume (CHI))

For P ∈ Rm and a reference point r with ∀p ∈ P : p �C r:

CHI(P) = LebesgueMeasure((P ⊕ C)︸ ︷︷ ︸
(1)

∩({r} 	 C)︸ ︷︷ ︸
(2)

).

(1) cone-dominated subspace
(2) anti-cone for r .
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Cone Based Hypervolume Indicator
Pyramidal Cones

Definition of γ cones

Definition (γ-cone)

A cone spanned by m base vectors, c(1), . . . , c(m):

1. the angle between the and each of the base vectors c(i) is γ

2. each base vector c(i) is a unit vector in the plane spanned by
1 and e(i).
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Cone Based Hypervolume Indicator
Pyramidal Cones

Construction of γ cones

Theorem (Base vectors of pyramidal γ cone)

c(i)
j =

{
(1/
√

m − 1) sin(α) i 6= j
cos(α) i = j , α = arccos(1/

√
m)︸ ︷︷ ︸

θ

−γ

Proof in coordinate-free geometric algebra: Rotate e(i) in the
plane determined by the normalized bivector
B = (e(i) ∧ a)/ sin(θ) over an angle α to get c(i):

c(i) = exp(−
α

2
e(i) ∧ a
sin(θ)

) e(i) exp(
α

2
e(i) ∧ a
sin(θ)

).
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Pyramidal Cones

Fundamental Transformation
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Efficient Computation of CHI

In two dimensions we can use a simple partitioning scheme:
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Efficient Computation

Computation of CHI in m dimensions

Lemma (Billingsley: Probability and Measure, 1995)

We denote the Lebesgue measure by λ(.). Let F(x) = Tx + x0
denote an non-singular affine transformation, then

λ(FA) = det(T)λ(A).

Algorithm: m-dimensional CHI computation
Input: Cone base C, P ⊂ Rm, reference point r
1. Let Q = {q(1), . . . , q(µ)}, with q(i) = C−1p(i),

and r′ = C−1r.
2. Compute the standard hypervolume HI(Q, r′).

3. Return CHI(P) = (1/ det C−1) · HI(Q, r′).
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Cone Based Hypervolume Indicator
Efficient Computation

Efficient Computation of CHI

Lemma

For any fixed dimension m > 1, the computational complexity
of CHI in the size of an approximation set |A| is equal to that
of HI.

Proof.

• Recall: The computational complexity of HI is in
Ω(|A| log |A|) (Beume et al. 2009).

• The complexity of the reduction of CHI to HI is in O(|A|).

Hence, for m = 2, 3 CHI has complexity Θ(n log n).
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Cone Based Hypervolume Indicator
Efficient Computation

Efficiently computing all hypervolume
contributions

Lemma

Computing all contributions
∆CHI(a,A) = CHI(A)− CHI(A− {ai})

can be reduced in linear time to computing all contributions to
the standard hypervolume.

• Asymptotically optimal algorithm [Emmerich and Fonseca,
EMO 2011] with complexity O(|A| log |A|) can be applied
for m = 2, 3.

• Makes efficient implementation of steady state evolutionary
algorithms such as SMS-EMOA, Steady-state IBEA, and
MOO-CMA possible.
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Optimal distribution

Definition of optimal µ-distribution

Definition (Auger, Bader, Brockhoff and Zitzler, FOGA09)

For a Pareto front Y the optimal µ-distribution is defined as:
P∗µ ∈ arg maxP⊆Y,|P|≤µ HI(P)

optimal µ-distribution of HI for (|y|γ)1/γ ≡ 1, γ ∈ {1
4 ,

1
2 , 1, 2}:
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Cone Based Hypervolume Indicator
Optimal distribution

For the CHI optimal µ-distributions we proved two lemmas:

Lemma

For a compact, connected linear Pareto front in R2 the optimal
µ-distribution is evenly spaced for γ > 0.

Lemma

For a compact and connected Pareto front in R2 the optimal
µ-distribution is evenly spaced in the Manhattan distance for
γ → 0.

Both proofs exploit that a point has only a local influence on
the CHI. This was also used in similar proofs for the HI in
(Auger, Bader, Brockhoff and Zitzler [2009]).
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CHI EMOA Results in 2 dimensions
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Figure: Left: an obtuse cone, γ = π/3. Center: a Pareto cone,
γ = π/4. Right: an acute cone γ = π/8.
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CHI-EMOA

• We construct a simple (µ + 1)-EMOA by modifying
SMS-EMOA.

• Selection criterion:

• non-dominated sorting based on the cone C ∪ CPareto .
(Strictest order)

• CHI contributions replace HI contributions as a secondary
selection criterion.
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CHI EMOA Results in 2 dimensions
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Figure: L: obtuse: γ = π/3. C: γ = π/4. R: acute γ = π/8.

• Generalized Schaffer problems with scalable curvature
(Emmerich and Deutz, EMO 2007)

• The number of function evaluations is 50000.

• 10 D test problems.
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CHI-EMOA

Results on 3-D superspheres problem
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Summary

• CHI is a ’natural’ hypervolume indicator for cone-orders

• γ-cones: Efficient construction and computation of CHI

• CHI allows scaling from knee point focused to evenly spaced
via cone-parameter γ

• CHI EMOA: sort by contributions and strictest order;
Search gets more difficult for small γ
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Outlook

• CHI can also be used for curvature based preference
formulation*

• Implementations of CHI EMOA and CHI in MATLAB:
rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal
(by Pradyumn Shukla)

• Future work:

• Additional cases µ-optimal distributions
• Algorithm design aspects: can we do better?

∗[Pradyumn Kumar Shukla, Michael Emmerich, and André
Deutz: A Theoretical Analysis of Curvature Based Preference
Models, EMO 2013 ]
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Deutz: A Theoretical Analysis of Curvature Based Preference
Models, EMO 2013 ]

21/20



M. Emmerich, A. Deutz, J. Kruisselbrink, and P. Shukla.

Cone Based Hypervolume Indicator
Summary and Outlook

Outlook

• CHI can also be used for curvature based preference
formulation*

• Implementations of CHI EMOA and CHI in MATLAB:
rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal
(by Pradyumn Shukla)

• Future work:
• Additional cases µ-optimal distributions
• Algorithm design aspects: can we do better?

∗[Pradyumn Kumar Shukla, Michael Emmerich, and André
Deutz: A Theoretical Analysis of Curvature Based Preference
Models, EMO 2013 ]

21/20



M. Emmerich, A. Deutz, J. Kruisselbrink, and P. Shukla.

Cone Based Hypervolume Indicator
Summary and Outlook

End of our presentation

Questions?
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