Evidence accumulation in multiobjective data clustering

Julia Handl and Joshua Knowles University of Manchester

Data clustering

Unsupervised classification. Finding groups of data items that are similar "in some sense".

Data clustering

Introduction

Research focus

Experiments

Conclusion

EMO 2013

Evidence accumulation

The N×N co-association matrix is then defined as $C(i, j) = \frac{m_{ij}}{M}$ where m_{ij} indicates the number of times data items i and j have been assigned to the same cluster, e.g.

This can be used to construct a dissimilarity matrix for a further clustering step.

(Fred & Jain, 2005)

Evidence accumulation

Introduction

Research focus

Experiments

Multiobjective clustering

Use of an MOEA to optimize more than one clustering criterion simultaneously (MOCK).

(Handl & Knowles, 2007)

Multiobjective clustering

Introduction

Research focus

Experiments

Previously:

- MOCK returns a set of solutions (Pareto front approximation)
- A single preferred solution is selected from the front (model selection)
- Research question: Could we better exploit the information intrinsic to this "ensemble" of solutions?
 - Improved accuracy?
 - Support for model selection?
 - Insight into data?
- Use of Evidence Accumulation to "postprocess" MOCK's clustering solutions

MOCK

Introduction

Research focus

Experiments

Methods to generate input partitions

Input partitions

Introduction

Research focus

Experiments

Methods for model selection

	Minimum angle	Maximum branch length
MOCK	Any EvAcc	Any EvAccc

Model selection

Introduction

Research focus

Experiments

Conclusion

(Fred & Jain, 2005)

▶ Test suite of Gaussian clusters

Generator available online; Parameters in paper; 21 runs per instance.

Name	Dimensionality	Number of clusters	Instances
3d-4c	3	4	10
3d-6c	3	6	10
3d-8c	3	8	10
10d-4c	10	4	10
10d-6c	10	6	10
10d-8c	10	8	10

Data sets

Introduction

Research focus

Experiments

Performance evaluation

- Visualization in bi-objective space (attainment fronts)
- External validation (Adjusted Rand Index)
 - Best generated
 - ▶ Best selected
- Size of solutions sets

Performance evaluation

Introduction

Research focus

Experiments

Median attainment fronts (3d-8c-no0)

Overall deviation

Results

Introduction

Research focus

Experiments

Conclusion

I0 EMO 2013

Best generated & Solution Set Size

Results

Introduction

Research focus

Experiments

Best selected

Results

Introduction

Research focus

Experiments

Conclusion

Legend:

Minimum angle
Maximum branch
length
Random control data

Key findings

- MOCK with Evidence Accumulation:
 - Small decrease in average optimization performance and external validity
 - Significant reduction in size of solution sets

- Different inputs to Evidence Accumulation:
 - Best performance for clustering input from MOCK
 - To some extend, Evidence Accumulation appears to "implicitly optimize" MOCK's objectives
- Solution selection:
 - Inconsistent performance (potential for hybridization?)

Key findings

Introduction

Research focus

Experiments

Conclusion

13 EMO 2013

