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Introduction 

• RST Image Features 
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• Trace Transform[1]  and Theory of Triple Features 

[1] Kadyrov, A., Petrou, M.: The trace transform and its applications. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 23(8), 811–828 (2001) 
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[2] Albukhanajer, W.A., Jin, Y., Briffa, J.A., Williams, G.: Evolutionary Multi-Objective 

Optimization of Trace Transform for Invariant Feature Extraction. In: 2012 IEEE 

Congress on Evolutionary Computation, CEC, Brisbane, Australia, June.10-15, pp. 401–

408 (2012) 

Theory of Triple Features 



• Evolutionary Trace Transform (ETT)[2] 

• Using NSGA-II[3] and Pareto front concept on Trace Functionals 

[2] Albukhanajer, W.A., Jin, Y., Briffa, J.A., Williams, G.: Evolutionary Multi-Objective Optimization of Trace Transform for 

Invariant Feature Extraction. In: 2012 IEEE Congress on Evolutionary Computation, CEC, Brisbane, Australia, June 

10-15, pp. 401–408 (2012) 

 

[3] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, 1st ed. England: John Wiley & Sons. Ltd, 2002. 
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• Chromosome Structure (Integer): 

 

 

•Using NSGA-II and Pareto front concept to search ‘good’ Trace 

Functionals combinations to minimise the fitness functions in 1D 

feature space (One triple feature). 

• Fitness: 

 

 

ETT – Method I 

 T: Trace Functional 

 D: Diametric Functional 

 C: Circus Functional; 

 Θ: Max number of Directions 
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• Chromosome Structure (Integer): 

ETT – Method II 

• Fitness: 

• Using NSGA-II and Pareto front concept to search ‘good’ Trace 

Functionals pair to minimise the fitness functions in 2D feature 

space (Two Triple features). 

Double length Chromosome 
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Experiments 

Elitist NSGA-II operations:  Method I&II 

• Selection: 

1) Tournament 

2) Pareto-front assignment 

3) Crowding Distance 

• Uniform Crossover 

• Uniform Mutation 
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• The search space consists of 

1) 14 Trace Functionals (T) 

2) Six Diametric Functionals (D) 

3) Six Circus Functionals (C) 

4) Θ takes a value between [180 - 360] 

for each chromosome in Method I &II. 
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• Five images of low resolution (64x64) from fish database plus 

their rotated, scaled and translated versions are used during the 

evolutionary stage 
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• Offline Evolution: 200 generations. 

• NSGA-II implemented using 

SHARK Machine Learning Library[4] 

[4] Christian Igel, Verena Heidrich-Meisner, and Tobias 

Glasmachers. Shark. Journal of Machine Learning 

Research 9, pp. 993-996, 2008 

http://image.diku.dk/shark 

 

http://jmlr.csail.mit.edu/papers/v9/igel08a.html
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• Resulting Pareto-front, Method I: 

 Nine solutions,  

 Each solution represents 

a triple feature (1D). 
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• Resulting Pareto-front, Method II: 

 19 solutions,  

 Each solution represents 

A pair of Triple features (2D). 
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• Pareto fronts of Method I&II 

 Nine solutions Method II,  

 39 Solutions Method I 

(combined) 
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• 36 Possible combinations of 

Triple features pairs can be 

formed to implement 2D feature 

space: 
9
2

=  
9!

2 9−2 !
 



• Within-class scatter Sw 
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• Inverse between-class scatter Sb 
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Fish Images database 
• 20 class of 256x256 images 

• 4 samples per class 
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• Method I, 2D 

feature space 

using 2 solutions 
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)( II
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• Method II, 2D 

feature space 

using one 

solution 
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Conclusion  
• Two methods of Evolutionary Trace transform are developed for robust image feature 

extraction: Method I and Method II. 

• Features from Method I represent a 1D feature space and can be combined with another 

solution to form a pair of features in 2D space. Whereas features from Method II can form a 

2D space directly. Therefore, Method II take longer time to build non dominated solutions.   

• While both methods evolved by using a few resolution (64x64) images, both methods show a 

comparative results in higher resolution and different images.  

• Few solutions from both methods were explored and evaluated on a relatively large image 

database of 8554 images. While, Method I appears to provide better classification accuracy 

and take less time to evolve, Method II shows slightly less accuracy percentage. A fair 

comparison would be good if an average of more solutions are considered from both methods.  

23 

• Multiple solutions can be used with separate classifiers to build Heterogeneous 

Ensembles that could enhance performance further.  

•Combined deformations (such as rotation + scale) and noise on test images 

would be practical to evaluate the two methods further. Complexity analysis on 

each solution should also be considered for fine tuning the algorithm.  

Future Work:  
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