The slope-intercept form

Introduction

One form of the equation of a straight line is called the slope-intercept form because it contains information about these two properties.

The equation of a straight line

Any equation of the form

$$
y=m x+c
$$

where m and c are fixed numbers, (i.e. constants), has a graph which is a straight line.
For example,

$$
y=3 x+5, \quad y=\frac{2}{3} x+8 \quad \text { and } \quad y=-3 x-7
$$

all have graphs which are straight lines.

The slope and intercept of a straight line

In the equation $y=m x+c$ the value of m is called the slope, (or gradient), of the line. It can be positive, negative or zero. Lines with a positive gradient slope upwards, from left to right. Lines with a negative gradient slope downwards from left to right. Lines with a zero gradient are horizontal.
this line has a positive gradient this line has a negative gradient the gradient of this line is zero

The value of c is called the vertical intercept of the line. It is the value of y when $x=0$. When drawing a line, c gives the position where the line cuts the vertical axis.

Example

Determine the gradient and vertical intercept of each line.
a) $y=12 x-6$,
b) $y=5-2 x$,
c) $4 x-y+13=0$,
d) $y=8$,
e) $y=4 x$.

Solution

a) Comparing $y=12 x-6$ with $y=m x+c$ we see that $m=12$, so the gradient of the line is 12 . The fact that this is positive means that the line slopes upwards as we move from left to right. The vertical intercept is -6 . This line cuts the vertical axis below the horizontal axis.
b) Comparing $y=5-2 x$ with $y=m x+c$ we see that $m=-2$, so the gradient is -2 . The line slopes downwards as we move from left to right. The vertical intercept is 5 .
c) We write $4 x-y+13=0$ in standard form as $y=4 x+13$ and note that $m=4, c=13$.
d) Comparing $y=8$ with $y=m x+c$ we see that $m=0$ and $c=8$. This line is horizontal.
e) Comparing $y=4 x$ with $y=m x+c$ we see that $m=4$ and $c=0$.

Exercises

1. State the gradient and intercept of each of the following lines.
a) $y=5 x+6$,
b) $y=3 x-11$,
c) $y=-2 x+7$,
d) $y=9$,
e) $y=7-x$

Answers

1. a) gradient 5 , intercept 6
b) $3,-11$,
c) $-2,7$,
d) 0,9 ,
e) $-1,7$.

More about the gradient

The gradient measures the steepness of the line. A large positive value of m means the graph increases steeply as you move from the left to the right. A small, but positive value of m means the graph increases, but not very steeply. Similarly, a large negative value of m means that the graph drops steeply as you move from left to right. A small negative value means the graph decreases, but not very steeply.
In fact we can say more. The value of m tells us the amount by which y increases (or decreases) if x increases by one unit.
For example, for the line $y=5 x+13$, the value of y increases by 5 units every time x increases by 1 unit.
In the line $y=-3 x+7$ the value of y decreases by 3 units every time x increases by 1 unit. You should sketch these graphs to convince yourself of this behaviour.

Exercises

1. If $P=4 Q+9$, by what amount will P increase if Q increases by 1 unit?
2. If $P=11-3 Q$, by what amount will P decrease if Q increases by 1 unit?
3. If $P=19$, by what amount will P increase if Q increases by 1 unit?

Answers

1. 4 . 2.3 .
2. It will not. The value of P is constant, that is fixed at 19 . It does not depend upon Q.
