2.18

Graphical solution of

inequalities

Introduction

Graphs can be used to solve inequalities. This leaflet illustrates how.

1. Solving inequalities

We start with a very simple example which could be solved very easily using an algebraic method.

Example

Solve the inequality $x+3>0$.

Solution

We seek values of x which make $x+3$ positive. There are many such values, e.g. try $x=7$ or $x=-2$. To find all values first let $y=x+3$. Then the graph of $y=x+3$ is sketched as shown below. From the graph we see that the y coordinate of any point on the line is positive whenever x has a value greater than -3 . That is, $y>0$ when $x>-3$. But $y=x+3$, so we can conclude that $x+3$ will be positive when $x>-3$. We have used the graph to solve the inequality.

Example

Solve the inequality $x^{2}-2 x-3>0$.

Solution

We seek values of x which make $x^{2}-2 x-3$ positive. We can find these by sketching a graph of $y=x^{2}-2 x-3$. To help with the sketch, note that by factorising we can write y as $(x+1)(x-3)$. The graph will cross the horizontal axis when $x=-1$ and when $x=3$. The graph is shown above on the right. From the graph note that the y coordinate of a point on the graph is positive
when either x is greater than 3 or when x is less than -1 . That is, $y>0$ when $x>3$ or $x<-1$ and so:

$$
x^{2}-2 x-3>0 \quad \text { when } \quad x>3 \quad \text { or } \quad x<-1
$$

Example

Solve the inequality $(x-1)(x-2)(x-3)>0$.

Solution

We consider the graph of $y=(x-1)(x-2)(x-3)$ which is shown below. It is evident from the graph that y is positive when x lies between 1 and 2 and also when x is greater than 3 . The solution of the inequality is therefore $1<x<2$ and $x>3$.

Example

For what values of x is $\frac{x+3}{x-7}$ positive ?

Solution

The graph of $y=\frac{x+3}{x-7}$ is shown below. We can see that the y coordinate of a point on the graph is positive when $x<-3$ or when $x>7$.

$$
\frac{x+3}{x-7}>0 \quad \text { when } \quad x<-3 \quad \text { or when } \quad x>7
$$

For drawing graphs like this one a graphical calculator is useful.

