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Abstract
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1 Introduction

In a network, characterised by demand interdependencies along both sub-
stitute and complementary lines, encouraging competition in the form of
independent profit maximisation can be harmful to both firm profit and wel-
fare due to negative externalities arising through the complementary aspect
of the relationship between the demand for goods. In its most simple form,
this negative externality is seen in the model of complementary monopoly
due to Cournot (1838), whereby welfare is higher when the complementary
monopolists collude relative to where they independently maximise profit.
Indeed, allowing all firms to jointly maximise profit, effectively creating a
network monopoly, can improve welfare and profit (such an argument based
on prices is demonstrated in Economides and Salop, 1992). With regulators
rarely pursuing first-best policies due to the profound difficulties in imple-
menting them, not least due to considerable transactions and information
costs, we offer a possible solution which can yield both welfare and profit
enhancements relative to the cases of joint and independent profit maximisa-
tion.1 We illustrate our result in the context of a market in which two firms
each produce an X and Y component of a composite good which can be inter-
changed in consumption, hence there are four possible consumption bundles:
two cross-firm bundles and two single-firm bundles. The approach separates
decision-making along complementary and substitute lines and permits firms
to collude in a first-stage on cross-firm bundle prices, which captures the com-
plementary effects, and then choose prices to independently maximise profits
for the remaining single-firm prices in a second stage. This framework is
solved as a Stackelberg (von. Stackelberg, 1934) equilibrium (in with prices
with differentiated products) and can be shown to produce welfare outcomes
which are everywhere strictly superior to network monopoly. Though the
welfare outcome does not everywhere dominate that of independent profit
maximisation, it does offer a resolution to the problem created where the
importance of complementary ties between demands is sufficient that in-
dependent profit maximisation has a lower welfare outcome than network
monopoly.

In the following Section we consider the profit and welfare outcomes un-
der two regimes: full collusion across the network and independent pricing
between the two firms. In Section 3 we introduce a new regime in which the

1An alternative approach to the problem of network monopoly is to separate the market
along the lines once proposed (but ultimately discarded) in the Microsoft case, which
will be welfare improving only if there is sufficient post-split entry into the market (see
McHardy, 2006).
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two firms are allowed to collude on the setting of the cross-firm prices in a
first-stage and then set their single-firm prices simultaneously and indepen-
dently in a second stage. Section 4 concludes the paper.

2 Model

We envisage a simple network with four commodity bundles Qij (i, j = 1, 2),
where demands for the bundles are interrelated based upon the utility func-
tion:

U(Q) = 4α
∑

Qij −
n

2(1 + µ)

[∑
(Qij)

2 +
µ

n
(
∑

Qij)
2
]

+ z, (i, j = 1, 2).

(1)
Eq. (1) is the standard quadratic utility function where, for our purposes, n
is the number of commodity bundles (here n = 4), µ ∈ [0,∞) is a measure of
the degree of substitutability amongst the commodity bundles (with µ = 0
for zero substitutability and µ→∞ for perfect substitutes), z is a numeraire
good hence U(Q) is quasi-linear, justifying the use of a partial equilibrium
analysis, v is a positive parameter and P is a vector of commodity bundle
prices, Pij. Consequently, demand for commodity bundle Qij is linear in
prices:

Qij(P) = α−
(

1

4
+

3µ

16

)
Pij +

µ

16

∑
mn6=ij

Pmn, (i, j = 1, 2) (2)

In this specification, the coefficient on each own-price, which is related to
the partial own-price elasticity of demand, is common for each commodity
bundle. The cross-price co-efficient is also common across all alternative
commodity combinations to ij: all the alternative commodity bundles are
equally good, but generally (for µ <∞) imperfect, substitutes. For simplic-
ity and to aid tractability, we set costs equal to zero.

To begin, suppose the network is operated by a monopolist. Profit is
given by ΠM = P′Q(P). Maximising with respect to P, and solving the four
first-order conditions simultaneously, we have:

PM
ij = 2α. (3)
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Profit and welfare under monopoly are then, respectively:

ΠM = 4α2, WM = 6α2. (4)

We now consider the profit and welfare situation in the case that the monopoly
is split into two, with each rival firm producing an X and Y commodity and
setting prices on them to independently maximise profit. Profit for firm i is
now:

ΠD
i = PiiQii(P) + pxiQij(P) + pyiQji(P), (5)

where pxi is the price set by firm i for its x commodity that is consumed
in the composite ij with demand Qij. Note, Pij ≡ pxi + pyj. Maximising
firm i’s profit with respect to its arguments, Pii, pxi and pyi, and solving the
first order conditions simultaneously, yields the equilibrium composite prices,
under network duopoly:

PD
ii =

16α(µ+ 1)

8 + 9µ+ 4µ2
, (6a)

PD
ij = pDxi + pDyj =

16α(µ+ 4)

3(8 + 9µ+ 4µ2)
. (6b)

Industry profit and welfare under independent pricing are then, respectively:

ΠD =
32α2(68 + 179µ+ 160µ2 + 40µ3)

9(8 + 9µ+ 4µ2)2
, (7a)

WD =
8α2(376 + 1084µ+ 1241µ2 + 632µ3 + 144µ4)

9(8 + 9µ+ 4µ2)2
. (7b)

Lemma 1. 2 Let ΩDM(µ) ≡ ΠD/ΠM . (i) ΩDM(µ) < 1 , (ii) ΩDM(µ) is

increasing (decreasing) for µ ∈ (0, a) (µ ∈ (a,∞)) and strictly concave (con-

vex) for µ ∈ (0, b) (µ ∈ (b,∞)), where a ∼= 0.320 and b ∼= 1.177 (3 d.p.), and

(iii) limµ→∞ ΩDM(µ) = 0.

Lemma 2. Let ΥMD(µ) ≡ WM/WD. (i) ΥMD(µ) is strictly increasing and

concave, (ii) ΥMD(µ) is greater (less) than unity for µ < c (µ > c), where

2All proofs are reported in the Appendix.
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c ∼= 0.282 (3 d.p.), and (iii) limµ→∞ ΥMD(µ) = 1.333 (3 d.p.).

Hence we have shown that if µ is sufficiently small, and hence the com-
plementary effects are sufficiently large relative to the substitute effects in
the demand system, then monopoly is preferable to independent pricing in
terms of welfare.3 This is quite undesirable from a public policy point of
view. In the following Section we show that this problem can be entirely
eliminated by employing a leader-follower approach to price setting, exploit-
ing the Stackelberg model.

3 Stackelberg Pricing

We now examine the impact upon the equilibrium prices, profits and welfare
under a new regime in which the two firms are allowed to collude on the
setting of their components of the cross-firm prices (Pij where i 6= j =
1, 2) in stage 1 and then are required to set their single-firm prices (Pii)
simultaneously, in stage 2. Given there is full information regarding stage 1
prices when the second stage simultaneous pricing takes place, this regime is
characterised by a Stackelberg model. The firms will seek to set cross-firm
prices at stage 1 which ensure that they maximise their overall profit given
they will be independently maximising profit on single-firm prices in stage
2. Working backwards, for the independent and simultaneous price setting
in stage 2, firm i will be maximising:

ΠS
i = PiiQii(P) + pxiQij(P) + pyiQji(P), (8)

with respect to Pii with the values of pxi, pyi, pxj and pyj given. Differentiating
Eq. (8) with respect to Pii, we get the first-order condition:

∂ΠS
i

∂Pii
= α− 1

2

(
1 +

3µ

4

)
Pii +

µ

16
(Pjj + 2(pxi + pyi) + pxj + pyj) = 0. (9)

Using the implicit function theorem, it is straightforward to derive from Eq.
(9) the stage 2 responses by firm i (firm j) in terms of its optimal choice of
Pii (Pjj) given a change in the period 1 choices of pxi, pyi, pxj and pyj, which
are as follows:

dPii
dpxi

=
dPii
dpyi

=
µ

4 + 3µ
, (10a)

3See Economides and Salop (1992) for an equivalent result based on prices.
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dPii
dpxj

=
dPii
dpyj

=
µ

2(4 + 3µ)
. (10b)

Now the problem for the firms is to set the first-stage price on the cross-
firm commodities given they know that their stage 2 behaviour will have the
effects indicated in Eqs. (10a) and (10b). Hence, the two firms seek to set
Pij (i 6= j = 1, 2) so as to jointly maximise profit. Joint profit is given by
ΠS ≡ ΠS

i + ΠS
j . Let p be the 4-vector with elements pxi, pxj, pyi and pyj.

Joint profit can then be expressed as:

ΠS =
Pii(p)

16
[16α− (4 + 3µ)Pii(p) + µ(Pjj(p) + pxi + pxj + pyi + pyj)] (11)

+
Pjj(p)

16
[16α− (4 + 3µ)Pjj(p) + µ(Pii(p) + pxi + pxj + pyi + pyj)]

+
(pxi + pyj)

16
[16α− (4 + 3µ)(pxi + pyj) + µ(Pii(p) + Pjj(p) + pxj + pyi)]

+
(pxj + pyi)

16
[16α− (4 + 3µ)(pxj + pyi) + µ(Pii(p) + Pjj(p) + pxi + pyj)].

Differentiating Eq. (11) with respect to pxi, recognising that Pii(p) and
Pjj(p), according to Eqs. (10a) and (10b):4

4Whilst the relevant second order conditions in all earlier cases are met trivially, the
following demonstrates the conditions under which the second order condition is met for
the first-period joint profit maximisation case. First, for convenience let:

∂2ΠS

∂r∂s
≡ ΠS

rs, (r, s = 1, 2, 3, 4), (12)

where x1, x2, y1 and y2 are denoted, respectively, by 1, 2, 3 and 4. The Hessian for the
problem can therefore be summarised (given the symmetry of the problem, e.g., ΠS

11 = ΠS
22,

and given the symmetry due to Young’s Theorem e.g., ΠS
12 = ΠS

21), as:∣∣∣∣∣∣∣∣
ΠS

11 ΠS
12 ΠS

13 ΠS
14

ΠS
12 ΠS

11 ΠS
14 ΠS

13

ΠS
13 ΠS

14 ΠS
11 ΠS

12

ΠS
14 ΠS

13 ΠS
12 ΠS

11

∣∣∣∣∣∣∣∣ (13)

Given the matrix is symmetric, for a maximum we require that the diagonal is negative
and dominant (see, for instance Theorem M.D.5, Mas-Colell et al., 1995, p. 939). The

diagonal is negative if ΠS
11 < 0, which it is since −

(
1
8 + 7µ

32 + 79µ2

512 + 89µ3

2048

)
< 0, given

µ ∈ [0,∞). Similarly, the diagonal is dominant if ΠS
11 − ΠS

12 − ΠS
13 − ΠS

14 < 0, which it is
since −(1/256)µ(1028µ2 + 3µ3 + 2048µ+ 1024)/(4 + 3µ)2 < 0.
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∂ΠS

∂pxi
=

1

16(3µ+ 4)
[24αµ− 3µ(1 + µ)Pii + 2µ2Pjj (14)

− (pxi + pyj)(15µ2 + 48µ+ 32) + 2µ(pxj + pyi)(2 + 3µ)].

Recognising symmetry, let P S
ii = Pii = Pjj and P S

ij = Pij = pxi + pyj =
pxj + pyi = Pji, Eqs. (9) and (14) can be written, respectively:

16α + 3µPij − (8 + 5µ)Pii = 0, (15a)

µPii(2 + 3µ)− (20µ+ 3µ2 + 16)Pij + 4α(8 + 9µ) = 0. (15b)

Solving Eqs. (15a) and (15b) simultaneously we have:

P S
ij =

2α(64 + 120µ+ 57µ2)

120µ+ 59µ2 + 64 + 3µ3
, (i 6= j = 1, 2), (16a)

P S
ii =

2α(64 + 104µ+ 39µ2)

120µ+ 59µ2 + 64 + 3µ3
. (16b)

Lemma 3. Under the Stackelberg equilibrium, the first-stage cross-commodity

bundle price P S
ij is weakly greater than the second-stage own-commodity bun-

dle price P S
ii , with equality of prices under µ = 0.

Hence, as we would expect, the firms are able to achieve a higher price un-
der collusion and in a first-stage “price-leader” position, than in the second-
stage, independent pricing “follower” position. Industry profit and welfare
under the Stackelberg equilibrium are then, respectively:

ΠS =
4α2(4096 + 11264µ+ 10560µ2 + 3600µ3 + 207µ4)

(64 + 120µ+ 59µ2 + 3µ3)(64 + 56µ+ 3µ2)
, (17a)

W S =
2α2(12288 + 34816µ+ 34240µ2 + 12976µ3 + 1299µ4 + 36µ5)

(1 + µ)(64 + 56µ+ 3µ2)2
. (17b)

Lemma 4. The Stackelberg equilibrium only produces interior solutions for:

µ <
28 + 4

√
61

3
. (18)

7



Proposition 1. Let ΩSM(µ) ≡ ΠS/ΠM . (i) ΩSM(µ) is negative monotonic in

µ and strictly concave (convex) for µ ∈ [0, d) (µ ∈ (d,∞)), where d ∼= 2.602

(3 d.p.), (ii) ΩSM(µ) ≤ 1, and (iii) limµ→∞ ΩSM(µ) = 0.

Proposition 2. Let ΥMS(µ) ≡ WM/W S. (i) ΥMS(µ) is negative monotonic

in µ and strictly convex, (ii) ΥMS(µ) ≤ 1 for µ ≥ 0, (iii) limµ→∞ ΥMS(µ) =

0.75.

Hence, profit is weakly greater under monopoly than under the Stackel-
berg regime but the reverse is true in the case of equilibrium welfare. Hence
we have demonstrated that the Stackelberg regime does not suffer from the
same problem as independent profit maximisation, inasmuch as there exists
no interval of µ for which the associated equilibrium is more damaging to
welfare than monopoly. However, to understand the relationship between
the Stackelberg and independent profit maximising outcomes, we complete
the analysis with the following Propositions.

Proposition 3. Let ΩSD(µ) ≡ ΠS/ΠD. (i) ΩSD(µ) is increasing (decreas-

ing) for µ ∈ [0, e) (µ ∈ (e,∞))and strictly concave (convex) for µ ∈ [0, f)

(µ ∈ (f,∞)), where e ∼= 0.3495 (4 d.p) and f ∼= 1.199 (3 d.p.), (ii)

limµ→∞ ΩSD(µ) = 0, and (iii) ΩSD(µ) > (≤)1 for g > µ > h (µ ∈ [g, h]),

where g ∼= 0.349 and h ∼= 0.350 (3 d.p.).

Proposition 4. Let ΥDS(µ) ≡ WD/W S. (i) ΥDS(µ) is increasing (decreas-

ing) for µ ∈ [0, k) (µ ∈ (k,∞)) and strictly concave (convex) for µ ∈ [0, r)

(µ ∈ (r,∞)), where k ∼= 2.854 and r ∼= 5.538 (3 d.p.), (ii) ΥDS(µ) < (≥)1

for µ < (≥)t, where t ∼= 0.350 (3 d.p.), (iii) limµ→∞ ΥDS(µ) = 1.

Hence, we have shown that welfare under the Stackelberg regime domi-
nates that under independent profit maximisation for an interval of µ which
extends strictly beyond that for which independent profit maximisation is
inferior to monopoly. Indeed, over much the same range, we note that profit
to the firms is also generally greater under the Stackelberg regime than under
independent profit maximisation.
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4 Discussion and Conclusions

In this paper we have employed a simple model based upon a network of
linear demands to show that, by allowing firms to set come prices collusively
and other prices independently, in a two stage process, both firm profit and
welfare can be improved relative to a situation of independent pricing ev-
erywhere. In particular, if the complementary effects are sufficiently large
relative to the substitute effects in the demand structure of the network,
then independent pricing everywhere results in a lower welfare outcome than
monopoly. In such circumstances, the ‘Stackelberg’ pricing structure pro-
posed in this paper produces an outcome which is strictly superior in welfare
terms compared with both monopoly and independent pricing, but is also
generally more attractive than independent pricing to the firms. Hence, the
Stackelberg pricing regime may not only help resolve a problem of welfare loss
but will also be attractive to the firms, reducing the risk of non-compliance.

Regarding the robustness of our findings, whilst we assume a convenient
form for utility which produces symmetric and linear demands we note that
scope will still exist for generalisations away from our assumptions where
there the demand structure includes complementary and substitute charac-
teristics. It is the existence of externalities due to the complementarity in the
demand structure which adversely affects welfare under independent profit
maximisation relative to monopoly. By addressing this externality, allowing
the firms to collude on some prices in a first-stage of the game, this external-
ity is partially addressed, raising both profit and welfare. Finally, though for
reasons of tractability costs were assumed away, the above argument suggests
that the inclusion, at least of constant marginal cost, should not eliminate
potential gains from addressing the externality due to the complementarity
in the demand network.
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Appendix

Proof of Lemma 1. First, note ΩDM is continuous. From Eqs. (4) and (7a):

ΩDM (µ) =
8(179µ+ 160µ2 + 40µ3 + 68)

9(8 + 9µ+ 4µ2)2
, (19)

which is clearly increasing (decreasing) for sufficiently small (large) µ, since:

∂ΩDM (µ)

∂µ
= −8(−208 + 139µ+ 1188µ2 + 920µ3 + 160µ4)

9(8 + 9µ+ 4µ2)3
, (20)

and is strictly concave (convex) for sufficiently small (large) µ, since:

∂2ΩDM (µ)

∂µ2
=

16(−3364− 10749µ− 4304µ2 + 6944µ3 + 4800µ4 + 640µ5)

9(8 + 9µ+ 4µ2)4
. (21)

Indeed, Eq. (21) changes from concave to convex at µ = b ∼= 1.177 (3 d.p.). Finally,

ΩDM (µ) < 1 follows from noting that ΩDM (µ) obtains a minimum at µ = a ∼= 0.320

(3 d.p.) whereupon ΩDM is strictly positive. (iii) Using Bernoulli-L’Hôspital’s Rule,

limµ→∞ ΩDM (µ) = 0.

Proof of Lemma 2. (i) First note that ΥMD ≡ WM/WD is continuous. From Eqs. (4)

and (7a):

ΥMD(µ) =
4(144µ4 + 632µ3 + 1241µ2 + 1084µ+ 376)

27(8 + 9µ+ 4µ2)2
, (22)

which is clearly increasing for µ ≥ 0, since:

∂ΥMD(µ)

∂µ
=

16(92µ3 + 16µ4 + 540µ2 + 1021µ+ 476)

27(8 + 9µ+ 4µ2)3
> 0, (23)

and is strictly concave for µ ≥ 0, since:

∂2ΥMD(µ)

∂µ2
= −32(11536µ2 + 4064µ3 + 480µ4 + 64µ5 + 10581µ+ 2342)

27(8 + 9µ+ 4µ2)4
< 0. (24)

(ii) Setting Eq. (22) equal to unity and solving for µ yields µ = c ∼= 0.282(3d.p.). It is

straightforward to see that Eq. (22) is greater (less) than unity for higher (lower) values

of µ. (iii) Using Bernoulli-L’Hôspital’s Rule, limµ→∞ΥMD(µ) = 13824/10368.

Proof of Lemma 3. It follows from Eqs. (16a) and (16b) that PSij−PSii = (+)(16µ+18µ2)
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which is zero for µ = 0 and strictly positive for µ > 0.

Proof of Lemma 4. Using Eqs. (16a) and (16b) in Eq. (2), we get the demand for the

cross-firm good under the Stackelberg pricing regime is:

QSij =
α(64 + 56µ− 3µ2)

2(3µ2 + 56µ+ 64)
(25)

which is only positive iff Eq. (18) holds.

Proof to Proposition 1. (i) First note that ΩSM (µ) ≡ ΠS/ΠM is continuous. From Eqs.

(7a) and (17a):

ΩSD(µ) =
207µ4 + 3600µ3 + 10560µ2 + 11264µ+ 4096

(120µ+ 59µ2 + 64 + 3µ3)(3µ2 + 56µ+ 64)
, (26)

which is clearly negative monotonic in µ, since:

∂ΩSM (µ)

∂µ
= −µ(621µ5 + 10008µ4 + 42912µ3 + 74496µ2 + 57344µ+ 16384)

(3µ2 + 56µ+ 64)2(1 + µ)(120µ+ 59µ2 + 64 + 3µ3)
. (27)

Given:

∂2ΩSM (µ)

∂µ2
=

(
2

(3µ2 + 56µ+ 64)2(1 + µ)(120µ+ 59µ2 + 64 + 3µ3)2

)
(28)

× (1863µ8 + 27648µ7 + 140832µ6 + 248544µ5 − 526080µ4

− 2543616µ3 − 3588096µ2 − 2228224µ− 524288),

ΩSM (µ) is clearly strictly concave (convex) for sufficiently small (large) values of µ. Setting

Eq. (28) equal to zero yields µ = d ∼= 2.602 (3 d.p). (ii) First, note that ΩSM (0) =

1. Observing that ΩSM (µ) is negative monotonic, as established in (i), it follows that

ΩSM (µ > 0) < 1, which completes the proof. (iii) Using Bernoulli-L’Hôspital’s Rule,

limµ→∞ ΩSM (µ) = 0.

Proof of Proposition 2. (i) First note that ΥMS ≡WM/WS is continuous. From Eqs. (4)

and (17b):

ΥMS(µ) =
12288 + 34816µ+ 34240µ2 + 12976µ3 + 1299µ4 + 35µ5

3(1 + µ)(64 + 56µ+ 3µ2)2
, (29)
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which is clearly decreasing for µ ≥ 0, since:

∂ΥMS(µ)

∂µ
=−

(
3(3µ2 + 56µ+ 64)

(1299µ4 + 12976µ3 + 34240µ2 + 36µ5 + 34816µ+ 12288)2

)
(30)

× (10152µ5 + 59328µ4 + 179456µ3 + 243µ6 + 285696µ2 + 221184µ+ 65536) < 0,

and is strictly convex for µ ≥ 0, since:

∂2ΥMS(µ)

∂µ2
=

(
24

(1299µ4 + 12976µ3 + 34240µ2 + 36µ5 + 34816µ+ 12288)3

)
(31)

×(201403138048µ3 + 139997478912µ2 + 54559506432µ+ 178569609216µ4

+ 101849677824µ5 + 38617888768µ6 + 10261702656µ7 + 2009340000µ8

+ 265008240µ9 + 18506880µ10 + 594864µ11 + 6561µ12 + 9126805504) > 0.

(ii) First, note that ΥMS(0) = 1. Second, it follows from the strict negative monotonicity

of ΥMS(µ) as established in (i), that ΥMS(µ > 0) < 1. (iii) Using Bernoulli-L’Hôspital’s

Rule, limµ→∞ΥMS(µ) = 3240/4320.

Proof of Proposition 3. (i) First note that ΩSD(µ) ≡ ΠS/ΠD is continuous. From Eqs.

(4) and (17a):

ΩSM (µ) =
8(68 + 179µ+ 160µ2 + 40µ3)(120µ+ 59µ2 + 64 + 3µ3)(3µ2 + 56µ+ 64)

9(8 + 9µ+ 4µ2)2(207µ4 + 3600µ3 + 10560µ2 + 11264µ+ 4096)
,

(32)

which is clearly increasing (decreasing) in µ if µ is sufficiently small (large), since:

∂ΩSD(µ)

∂µ
=−

(
8

9(8 + 9µ+ 4µ2)3(207µ4 + 3600µ3 + 10560µ2 + 11264µ+ 4096)2

)
× (−17431527424µ− 16374562816µ2 + 81595465728µ3 + 300426264576µ4

+ 488007536640µ5 + 472673600512µ6 + 292014724864µ7 + 115412832016µ8

+ 28059227097µ9 + 3844182348µ10 + 253318896µ11 + 6093360µ12 − 3489660928).

(33)
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Setting Eq. (33) equal to zero and solving for µ yields, µ = e ∼= 0.3495 (4 d.p.). Given:

∂2ΩSD(µ)

∂µ2
=

(
16

3(8 + 9µ+ 4µ2)4(207µ4 + 3600µ3 + 10560µ2 + 11264µ+ 4096)3

)
× (−845661880713216µ− 4286940002123776µ2 − 12672640309264384µ3

− 23973745492230144µ4 − 29436990785060864µ5 − 21318466171568128µ6

− 3576595470090240µ7 + 10929409200062464µ8 + 14367546390040576µ9

+ 9868024438793472µ10 + 4394664490046336µ11 + 1317772443151044µ12

+ 262788896301381µ13 − 73942156967936 + 33436492270416µ14

+ 2538719996256µ15 + 102982034664µ16 + 1681767360µ17), (34)

ΩSM (µ) is clearly strictly concave (convex) for sufficiently small (large) values of µ. Setting

Eq. (34) equal to zero yields µ = f ∼= 1.199 (3 d.p). (ii) Using Bernoulli-L’Hôspital’s Rule,

limµ→∞ΩSM (µ) = 0. (iii) First, note that ΩSM (0.3495) > 1, whilst ΩSM (0) < 1 and from

(ii), limµ→∞ΩSM (µ) = 0. Given the properties of ΩSM (µ) from (i), we know that ΩSM (µ)

must equal unity at two points in the relevant range of µ. Setting Eq. (32) equal to unity

and solving for µ, we find the roots µ = g ∼= 0.349 and µ = h ∼= 0.350 (3 d.p.).

Proof of Proposition 4. (i) First note that ΥDS ≡WD/WS is continuous. From Eqs. (7a)

and (17b):

ΥDS(µ) =
4(144µ4 + 632µ3 + 1241µ2 + 1084µ+ 376)(1 + µ)(3µ2 + 56µ+ 64)2

9(8 + 9µ+ 4µ2)2(1299µ4 + 12976µ3 + 34240µ2 + 36µ5 + 34816µ+ 12288)
,

(35)

which is clearly increasing (decreasing) for sufficiently small (large) values of µ, since:

∂ΥDS(µ)

∂µ
=−

(
4

9(8 + 9µ+ 4µ2)3(1299µ4 + 12976µ3 + 34240µ2 + 36µ5 + 34816µ+ 12288)2

)
× (3µ2 + 56µ+ 64)(−8806465536µ− 25413812224µ2 − 40627978240µ3

− 38899857408µ4 − 22079425152µ5 − 6267853520µ6 + 222363204µ7

+ 862537792µ8 + 331806643µ9 + 65740644µ10 + 6351696µ11

+ 133056µ12 − 1300234240), (36)
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and is clearly strictly concave (convex) for sufficiently small (large) values of µ, since:

∂2ΥDS(µ)

∂µ2
=

(
32

9(8 + 9µ+ 4µ2)4(1299µ4 + 12976µ3 + 34240µ2 + 36µ5 + 34816µ+ 12288)3

)
×(−18327072128630784µ− 105205505235877888µ2 − 360170887770537984µ3

− 825429319634386944µ4 − 1343488454855491584µ5 − 1604454731011850240µ6

− 1429980672502530048µ7 − 956663665954275328µ8 − 478415605887645696µ9

− 175977789100670592µ10 − 45842990698845024µ11 − 7621631524112918µ12

− 448042813761015µ13 − 1425104508551168 + 148732848593492µ14

+ 52788607837920µ15 + 8924481301365µ16 + 897657699312µ17

+ 50651845344µ18 + 1415169792µ19 + 14370048µ20). (37)

(ii) First, note that ΥMS(0) = 1. Second, it follows from the strict negative monotonicity

of ΥMS(µ) as established in (i), that ΥMS(µ > 0) < 1. (iii) Using Bernoulli-L’Hôspital’s

Rule, limµ→∞ΥMS(µ) = 3240/4320.
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