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Abstract

The aim of this paper is to develop a unit root test that takes into account two
sources of nonlinearites in data, i.e. asymmetric speed of mean reversion and struc-
tural changes. The asymmetric speed of mean reversion is modelled by means of a
exponential smooth transition autoregression (ESTAR) function for the autoregressive
parameter, whereas structural changes are approximated by a smooth transition in the
deterministic components. We find that the proposed test performs well in terms of
size and power, in particular when the autoregressive parameter is close to one.
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1 Introduction

During the last decades there has been an increasing number of studies which have developed

tests to analyse the order of integration of variables. Within them, particular attention has

been paid to unit root tests that take into account structural changes and nonlinearities.

On one hand, it is well known that the existence of structural changes in the series, might

affect the power of the augmented Dickey-Fuller (ADF) test. Some authors such as Campbell

and Perron (1991), amongst others, suggest that the ADF test tends to suffer from power

problems when the deterministic components are incorrectly specified. Therefore, traditional

unit root tests might not be able to distinguish a stationary process with an autoregressive

parameter close to 1, from a unit root. This problem is even more important when there are

structural changes in the series, since in this case, the behaviour of an I(1) process can be

very similar to that of a stationary process with breaks. Rappoport and Reichlin (1989) and

Perron (1989, 1990) show that traditional unit roots might incorrectly conclude that the

series have a unit root when in fact they are stationary with structural changes. The point

is that in the latter case, breaks in slope or intercept have permanent effect on the variable,

similar to a stochastic shock, i.e. the case of an unit root process. The difference however is

that in the former, the shocks occur periodically and in the latter the changes occur only at

certain points of time. In order to overcome this issue, several authors have developed unit

root tests in order to take into account structural changes (see Perron, 1989, 1990; Zivot and

Andrews, 1992; Perron and Vogelsang, 1992a, 1992b; Lumsdaine and Papell, 1997; Perron

and Rodŕıguez, 2003; and Bai and Perron, 2003).

Nevertheless, most of these tests take into account a sudden change rather than smooth.

This behaviour of the modelled variable might be inappropriate though, since at the aggre-

gate level, changed may be smooth when the individuals suddenly change their behaviour

in close but different moments of time (Granger and Teräsvirta, 1993). Some authors have

proposed different ways to address this point. For instance, Bierens (1997) proposes a unit

root test versus the alternative hypothesis of stationarity about a nonlinear deterministic
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trend. The nonlinear trends are approximated by means of Chebishev polynomials. Never-

theless, this is not the only way that has been considered in the literature to approximate

nonlinear trends; Leybourne et al. (1998) propose a unit root test, whereby the series are

detrended before performing the ADF test.

On the other hand, nonlinearities can be present in the series as an asymmetric speed of

mean reversion, i.e. the autoregressive parameter varies depending upon values of a variable.

This nonlinear behaviour implies that there is a central regime where the series behave as

a unit root whereas for values outside the central regime, the variable tends to revert to

the equilibrium. These type of nonlinearities can be modelled as a threshold autoregressive

model (TAR) (see Enders and Granger, 1998; Caner and Hansen, 2001). However, it might

be plausible to assume that the change between regimes is smooth rather than sudden.

Following the latter, Kapetanios et al. (2003) (KSS) develop a unit root test within the

exponential smooth transition autoregressions framework (ESTAR). The null hypothesis is

tested against the alternative of globally stationary ESTAR process. Nevertheless, KSS

though controlling for an asymmetric speed of mean reversion, do not take into account

nonlinearities in the deterministic components. Chong et al. (2008), propose a modification

of the KSS auxiliary regression by including deterministic trends, which can be linear or

quadratic. Recently, Christopoulos and León-Ledesma (2010) have proposed a unit root test

that takes into account asymmetric speed of mean reversion, as well as structural changes

in the intercept, approximated by means of a Fourier function. This allows the intercept

to vary along the sample but is restricted to be the same at the beginning and at the end

of the sample. This testing procedure is specially appropriate to test for purchasing power

parity since real exchange rate should be stationary around a constant in order to accept

such a theory.

In this paper we aim at contributing to the literature on unit roots and nonlinearities.

Following the approach by Christopoulos and León-Ledesma (2010), in the next section we

propose a unit root test that takes into account both sources of nonlinearities, i.e. in the
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deterministic components, approximated by a logistic smooth transition function not only

in the intercept, but also in the slope, and asymmetric adjustment of mean reversion. In

the third section we compare the power and size distortions of the proposed test with KSS’

test. The last section concludes.

2 Nonlinear unit root test

In this section we propose a unit root test that takes into account two types of nonlinearities

that might be present in the data and may affect the power properties of traditional unit root

tests, i.e. smooth transitions in the deterministic components and asymmetric adjustment

towards equilibrium. This test can be considered as an alternative to Leybourne et al.

(1998), KSS and Christopoulos et al. (2010). Note that the test proposed in this section is

a more general version of these authors’ tests, since we do not restrict the intercept to be

equal at the beginning and at the end of the sample.

In order to develop the test we, first, consider the following model

yt = g(t) + εt (1)

where ε ∼ NIID(0, σ2) and g(t) is a non-constant function of time. In order to model g(t)

we use a logistic smooth transition regression,

g(t) = g1 + g2t + g3Lt(γ) + g4tLt(γ) (2)

where Lt(γ) is a logistic smooth transition function defined as

Lt(γ) =
1

1 + e−γt
(3)

where γ > 0. Note that this function allows the changes in intercept/slope to be smooth

rather than sudden, that is between g1 and g1+g3 for the case of the intercept and between g2
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and g2 +g4 for the slope. The speed of transition adjustment in controlled by the parameter

γ, i.e. the larger the parameter is, the faster is the adjustment. For instance if γ = 0,

Lt = 0.5 and there is no structural change. On the other hand, for larger values of this

parameter the change is nearly instantaneous1.

Under this set up of the deterministic components, we aim to test the following unit root

hypothesis

H0 ≡ εt = µt, µt = µt−1 + εt (4)

where εt is assumed to be an I(0) process with zero mean.

In this paper we follow Christopoulos and León-Ledesma (2010) who propose to apply

the KSS unit root test to the residuals of equation (1) in order to take into account the

possibility of asymmetric adjustment. Therefore, this test involves a two-step procedure;

first, estimate equation (1) by nonlinear least squares (NLLS). Second, apply the KSS unit

root test to the residuals

ε̂ = yt − ĝ(t). (5)

KSS tests the unit root null hypothesis versus the alternative of globally stationary

ESTAR process, i.e.

∆ε̂t = αε̂t−1 + ϑε̂t−1(1− e−θε̂2t−1) + εt (6)

KSS impose α = 0, implying that ε̂t is an I(1) in the central regime. In order to test the

unit root null hypothesis, KSS propose a Taylor approximation for equation (6)

∆ε̂t = δε̂3
t−1 + ηt (7)

where ηt is an error term. Note that equations (6) and (7) can also include lags of the

dependent variable to avoid autocorrelation in the error term. Now, it is possible to test

H0 ≡ δ = 0 against H1 ≡ δ < 0. The proposed test is called t̂SNL.

1Note that the Lt(γ) function takes values between 0 and 1. In the limiting case with γ = +∞, Lt

changes almost instantaneously from 0 to 1.

5



Since this test does not follow the standard t distribution, the tabulated values are not

valid in order to perform the test. Although KSS and Christopoulos et al. (2010) propose

the critical values for their tests, they are not valid in our case, since the approximation

of the deterministic components is different from those used by KSS2 and Christopoulos et

al. (2010). Therefore, in table 1 we report the critical values for the test based on 50,000

replications for different sample sizes3.

3 Size distortions and power comparisons

In this section we carry out a Monte Carlo investigation of the small sample size and power

of the test proposed in the previous section. This Monte Carlo experiment is based on 2,000

replications.

First, we analyse the finite sample size characteristics of the proposed test. The empirical

size is analysed for different sample sizes, i.e. T = 100, 250, and for γ = 0.5, 1, 5 with a

nominal size of α = 0.05. We simulated the following null data generation process (DGP)

yt = 1 + 10t +
10t

1 + e−γt
+

10

1 + e−γt
+ vt (8)

vt = vt−1 + εt (9)

where εt ∼ N(0, 1).

The results are displayed in table 2. In general, we can conclude that the empirical size

of the test is quite close to the nominal one, 5%. Only some significant distortions are found

for T = 100 and γ = 5. Nevertheless, the problem reduces for T = 250.

Next, we investigate the power of the proposed test based on the following model

yt = 1 + 10t +
10t

1 + e−γt
+

10

1 + e−γt
+ vt (10)

2These authors only consider the cases of an intercept and a linear trend.
3The RATS code to obtain the critical values for other sample sizes is available upon request.
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vt = vt−1 + ρvt−1(1− e−θv2
t−1) + εt (11)

Table 3 displays the results of the power analysis for different values of the parameters

γ, ρ and θ and T=100. For comparison purposes we also display the power analysis for the

KSS test. In general it is possible to highlight that the t̂SNL test performs better in terms

of power when compared with the KSS test, in particular for higher values of ρ, i.e. closer

to the unit root. Therefore, the proposed test here tends to confuse less often the unit root

hypothesis with a globally stationary process with nonlinear deterministic components.

4 Conclusions

In this paper we have proposed a unit root test that accounts for nonlinear deterministic

trends and asymmetric adjustment. This new test can be applied to test empirically the

order of integration for a number of variables, which are believed to contain structural breaks

and nonlinear trends, such as exchange rates or unemployment rates. The empirical size of

the test is quite close to the nominal one and, in terms of power, the test appears to perform

better than the KSS, in particular when the autoregressive parameter is closer to unity.
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Table 1: Asymptotic critical values

T 1% 5% 10%
100 -3.947 -3.380 -3.087
250 -3.928 -3.386 -3.110
500 -3.957 -3.401 -3.118

Note: Monte Carlo experiment based on 50,000 replications.

Table 2: Size distortions

T γ = 0.5 γ = 1 γ = 5
100 0.0560 0.0495 0.0615
250 0.0525 0.0500 0.0530

Note: Monte Carlo experiment based on 2,000 replications.

10



Table 3: Power comparison

γ = 0.5 1 5

ρ θ t̂SNL KSS t̂SNL KSS t̂SNL KSS
-1.5 0.01 0.468 0.484 0.457 0.469 0.472 0.473
-1.5 0.05 0.989 0.968 0.985 0.963 0.983 0.965
-1.5 0.1 1.000 0.997 1.000 0.998 1.000 1.000
-1.5 1 1.000 1.000 1.000 1.000 1.000 1.000
-1 0.01 0.31 0.312 0.313 0.314 0.295 0.316
-1 0.05 0.919 0.873 0.919 0.861 0.911 0.872
-1 0.1 0.994 0.984 0.993 0.975 0.992 0.969
-1 1 1.000 1.000 1.000 1.000 1.000 1.000

-0.5 0.01 0.161 0.121 0.161 0.11 0.162 0.125
-0.5 0.05 0.575 0.573 0.558 0.584 0.557 0.578
-0.5 0.1 0.811 0.773 0.807 0.791 0.805 0.766
-0.5 1 0.969 0.99 0.971 0.99 0.971 0.99
-0.1 0.01 0.069 0.029 0.071 0.026 0.077 0.031
-0.1 0.05 0.094 0.065 0.105 0.073 0.1 0.067
-0.1 0.1 0.117 0.101 0.127 0.115 0.14 0.103
-0.1 1 0.162 0.165 0.171 0.171 0.164 0.178

Note: Monte Carlo experiment based on 2,000 replications and T=100.
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