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Abstract: We introduce the (panel) zero-inflated interval regression (ZIIR) model, to investigate GP 
visits using individual-level data from the British Household Panel Survey. The ZIIR is particularly 
suitable for this application as it jointly estimates the probability of visiting the GP and then, 
conditional on visiting, the frequency of visits (defined by given numerical intervals in the data). The 
results show that different socio-economic factors influence the probability of visiting the GP and the 
frequency of visits.  
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I. Introduction and Background 

Understanding primary health care utilisation is important for policy-makers. To achieve an 

efficient and equitable healthcare allocation, general practitioner (GP) services should be 

used in accordance with need. Evidence suggests that other factors, such as socioeconomic 

status, also influence GP visits. A substantial amount of empirical research has explored GP 

visits focusing on explaining the number of visits made within a specified time period, 

typically characterised by a significant proportion of zero observations and a small number of 

observations indicating frequent visits. As such, count data techniques have been popular in 

the existing literature. A particular focus relates to whether ‘zero’ observations reflect non-

participants (individuals who never visit a GP) or individuals who are potential, or infrequent, 

participants (they do visit their GP, but not during the study period). Zero-inflated count 

models distinguish between these two sources of zeros, treating the cluster at zero as a 

mixture of these two processes (for example, Freund et al., 1999, Wang, 2003, and Gurmu 

and Elder, 2008).  

In a similar vein, here we introduce the zero-inflated interval regression (ZIIR) model as 

our data is in the form of grouped counts. This new model is particularly appropriate here, but 

clearly could be used in a wide range of applications. Common approaches to modelling 

grouped count data include ordered probit (OP)1 and zero-inflated ordered probit (ZIOP) 

models.2 A ZIOP approach loses information, as would a standard OP, compared to an 

interval regression (IR) approach with known boundary points. In an IR-based approach, it is 

possible to estimate the scale of the dependent variable: the latent process underlying the 

“amount of consumption” has direct quantitative meaning. In a ZIOP, we can discuss partial 

effects of variables on the probabilities of outcomes (low, medium, high etc.), whereas, with 

                                                            
1 As suggested by Cameron and Trivedi (2005). 
2 A grouped count data model with excess zeros has also been considered by Moffatt and Peters (2000). 
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the ZIIR, we can estimate partial effects on the expected number of GP visits, thus providing 

more accurate information to policy-makers.  

II.  The Zero-Inflated Interval Regression Model 

We analyse grouped count data on the frequency of GP visits in an OP-type set-up. As with 

the ZIOP model of Harris and Zhao (2007), we define an observable random variable y that 

assumes the discrete ordered values of 0, 1,..., J, where unlike the former, here these 

outcomes have direct quantitative meaning. Unlike the OP approach, in the IR-case, due to 

the known grouping structure, the boundary parameters are fixed (at  = 1, 3, 6 and 11, see 

below). As with the ZIOP model, the proposed ZIIR model involves two latent equations: a 

probit selection equation and an IR one. As with double-hurdle models (Jones, 1989), to 

observe non-zero “consumption”, individuals must overcome two hurdles: whether to 

participate, and, conditional on participation, how much to “consume”.  

Let r denote a binary variable indicating the split between Regime 0 (r = 0 for non-

participants) and Regime 1 ( r = 1 for participants). Although unobservable, r is related to a 

latent variable  via the mapping r = 1 for 0 and r = 0 for 0.  represents the 

propensity for participation and is related to a set of explanatory variables  with 

unknown weights , and a standard-normally distributed error term, : 

 .          (1) 

Conditional on r = 1, consumption levels under Regime 1 for “participants” are 

represented by a discrete variable  0,1,… ,  generated by an IR model via a second 

latent variable  

,          (2) 

with explanatory variables  with unknown weights y  and a normally distributed error 

term , with the standard mapping of: 
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0 if  ,             
 if 
 if  ,         

, 1, … , 1        (3) 

Thus the major difference between the ZIIR and the ZIOP, is that in the former the  are 

known and therefore that the scale of y can now be identified, . Neither  nor r are directly 

observed. The observability criterion for observed y is 

.           (4) 

An observed 0 outcome can arise from two sources: 0 (the individual is a non-

participant); 1 (the individual is a participant) and jointly that  1 and 0 (the 

individual is a zero-consumption participant). To observe positive y, the individual is a 

participant ( 1  and 0. As the unobservables  and v relate to the same individual, 

they are likely to be related with covariance . So, on the assumption of joint 

normality we have: 

Pr 0| 1   , / ;    (5) 

and 

Pr |  , / ;  , / ; ,   

1, 1  

Pr |  , / ;  

where  . , . ;  represents the standardised bivariate normal distribution, with correlation 

coefficient, . Thus a zero observation is explicitly allowed to come from one of two sources, 

and this can account for the observed “excess” build-up of such zeros.  

As a further extension, we condition on individual unobserved heterogeneity by including 

unobserved effects in equations (1) and (2), which are assumed to be normally-distributed 

with mean zero and covariance matrix  
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∑           (6) 

This further innovation complicates estimation meaning that each unit’s it likelihood 

contributions are no longer independent; and the likelihood for each i is the product over . 

These unobserved effects need to be integrated out of the likelihood function; here 

undertaken via simulation techniques using Halton sequences of length 50.3 The simulated 

log-likelihood function is 

∑ log ∑ ∏                   (7) 

where  corresponds to the probability of the chosen outcome by individual i in period t as 

given by the appropriate element of equation (5). In usual IR, expected values (EVs) are 

simply given by , thus ex post here we consider overall expected values as 

| 0 0 0 | 0                 (8) 

                 

where .  is the Inverse Mills Ratio evaluated at its argument; and then | , 0  is 

| / .4  

III. Data 

We use the British Household Panel Survey (BHPS), a survey conducted by the Institute for 

Social and Economic Research, 1991 to 2008. We analyse an unbalanced panel of data 

comprising 51,713 observations focusing on males in England only.5 Individuals were asked, 

over the last 12 months, ‘approximately how many times have you talked to or visited a GP 

or family doctor about your own health?’ The possible responses were: none (33%); one or 

two (38%); three to five (17%); six to ten (7%); or more than ten (5%).  

                                                            
3 The results were essentially unchanged for a larger number of draws. 
4 These are evaluated at the expected values of both observed and unobserved heterogeneity. 
5 We focus on England only as health system policies have evolved differentially across the different countries 
of the United Kingdom.  
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In the probit selection equation, we follow the existing literature and include controls for: 

aged 18-30 (omitted category), 31-45, 46-60, 61-75 and over 75; married/cohabiting; non-

white; highest educational qualification; owner occupier; household size; children in the 

household aged 0-2, 3-4, 5-11, 12-15 and 16-18; employed/self-employed (omitted category), 

unemployed and out of the labour force; real household annual gross income6; region7; urban 

area; registered disabled; smoker; and self-assessed health (SAH) status, excellent, good, fair 

and poor (omitted category).8 For identification, we include two additional variables in the 

probit part: whether the individual has had dental or eyesight checks in the previous year. 

With the exception of the dental and eyesight checks, we include the same set of explanatory 

variables in the IR-part of the model as well as additional controls for: number of hours spent 

caring for an adult in the household; caring for someone outside the household; use of a car; 

and weekly hours spent on housework.  

IV.  Results 

Table 1 presents the marginal effects (MEs) associated with EVs of: (i) the unconditional 

number of GP visits, and; (ii) the number of GP visits conditional on visiting the GP. The 

final column shows the MEs associated with the probability of non-participation. The overall 

expected value predicts just over 2 visits to the GP over the last 12 months, with the expected 

value conditional on participation being slightly higher. In general, the ancillary parameters 

are strongly statistically significant. In terms of the EVs, the influence of SAH has a large 

monotonic negative effect on the number of GP visits, i.e., those in worse health visit GPs 

more frequently. For both types of EVs, smokers visit the GP less frequently than non-

smokers. The number of GP visits increases (decreases) monotonically with age (educational 

                                                            
6 Deflated to 1991 prices. 
7 We control for the eleven standard regions of England. 
8 To allow for the potential endogeneity of SAH, we follow Terza et al. (2008)’s two stage residual inclusion, 
where the first stage residuals from modelling SAH (as a consistently estimated dynamic random effects OP 
model) are included as additional regressors in the second stage along with the observed value of SAH. 
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attainment) relative to those aged 18-30 (those with no education). The role of household size 

increases the unconditional EV but, once conditioned on visiting the GP, has a negative 

effect. Out of the additional controls in the IR-part, those men who have the use of a car visit 

their GP more frequently, with both EVs being of similar magnitude. 

Focusing on the MEs associated with the probability of non-participation, older men are 

more likely not to visit the GP and this effect is monotonically increasing in age. Whilst 

having children under the age of five has no influence on the EVs, having dependents in this 

age range is associated with a higher probability of non-participation. For example, those 

men with children aged between 0-2 years old are 3.67 percentage points (pp) more likely to 

non-participate. There are clear effects of labour market status on the propensity to visit the 

GP. Whilst the unemployed are more likely to non-participate in comparison to those 

individuals who are employed or self-employed, around a 7pp higher probability, the 

converse is evident for those not in the labour market, approximately a 3.4pp lower 

probability. Whilst men in excellent/good/fair health visit the GP infrequently compared to 

those in poor health, such individuals are less likely to non-participate: for excellent health 

around a 13pp lower probability.9 There are positive income effects, where a one percent 

increase in annual income is associated with a 2.68pp higher probability of non-participation. 

The two identifying variables in the participation (probit) part of the model, indicators for 

dental and eyesight checks, are both statistically significant and exert negative effects on the 

probability of non-participation, perhaps signifying that such individuals generally are more 

likely to engage with health care.10 

 

 

                                                            
9 The marginal effects for the first stage residuals are positive and statistically significant throughout, indicating 
that self-assessed health is an endogenous variable thereby endorsing our two stage residual inclusion approach. 
10 We have also explored specifications with Mundlak fixed effects by including individual level mean variables 
for all time varying control variables. 
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V.  Conclusion 

We have proposed a ZIIR model for instances where there are groupings of data with a build-

up of observations at “zero”, and applied this to a problem of grouped counts of GP visits. 

The findings indicate that socio-economic factors have different influences across the two 

parts of the model, which should be of interest to policy makers concerned with healthcare 

allocation. Furthermore, it is apparent that the new model is widely applicable to areas where 

the outcome of interest is in the form of grouped counts. 
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TABLE 1: Determinants of the frequency of GP visits and the probability of non-participation 

 EXPECTED VALUES# PROBABILITY OF  

 UNCONDITIONAL CONDITIONAL NON-PARTICIPATION 

 M.E.s S.E.s M.E.s S.E.s M.E.s S.E.s 

Intercept 7.7930* 0.1901 9.0750* 0.1552 0.4129* 0.0354 
Aged 31-45 0.0868* 0.0462 0.0186* 0.0512 -0.0315* 0.0068 
Aged 46-60 0.1024* 0.0543 0.1343* 0.0591 0.0119* 0.0065 
Aged 61-75 0.5590* 0.0657 0.6209* 0.0699 0.0165* 0.0076 
Aged 76+ 0.5226* 0.0789 0.6290* 0.0830 0.0366* 0.0088 
Married 0.0883* 0.0399 -0.0397* 0.0404 -0.0577* 0.0074 
Non white 0.5363* 0.1250 0.4201* 0.1298 -0.0610* 0.0164 
Degree 0.1868* 0.0745 0.1704* 0.0789 -0.0107* 0.0070 
A level 0.2418* 0.0551 0.2073* 0.0578 -0.0197* 0.0055 
O level 0.1909* 0.0557 0.1302* 0.0585 -0.0302* 0.0060 
Own home -0.0876* 0.0388 -0.1076* 0.0410 -0.0071* 0.0038 
Household size 0.1472* 0.0245 -0.0515* 0.0201 -0.0898* 0.0076 
Children aged 0-2 0.0087* 0.0587 0.0929* 0.0625 0.0367* 0.0144 
Children aged 3-4 -0.0149* 0.0609 0.0543* 0.0635 0.0306* 0.0166 
Children aged 5-11 0.0035* 0.0498 0.0708* 0.0508 0.0294* 0.0130 
Children aged 12-15 -0.0589* 0.0463 -0.0125* 0.0464 0.0214* 0.0134 
Children aged 16-18 -0.1293* 0.0819 -0.0689* 0.0829 0.0289* 0.0221 
Unemployed 0.3264* 0.0679 0.4999* 0.0723 0.0697* 0.0089 
Out of the labour market 0.7008* 0.0433 0.6542* 0.0466 -0.0337* 0.0065 
Health excellent -7.9520* 0.1035 -8.6040* 0.0732 -0.1339* 0.0116 
Health good -7.4260* 0.1057 -8.1140* 0.0705 -0.1601* 0.0132 
Health fair -4.3950* 0.0637 -4.7100* 0.0507 -0.0544* 0.0067 
Generalised health residuals 1.3490* 0.0314 1.4860* 0.0280 0.0342* 0.0036 
Registered disabled 0.1970* 0.0504 0.2778* 0.0522 0.0316* 0.0064 
Smoker -0.1705* 0.0377 -0.1501* 0.0396 0.0121* 0.0041 
Live in urban area 0.2384* 0.0416 0.1534* 0.0437 -0.0418* 0.0053 
Log income -0.1597* 0.0196 -0.1054* 0.0209 0.0268* 0.0033 
Dental check 0.1649* 0.0192 0.0089* 0.0109 -0.0714* 0.0070 
Sight check 0.1873* 0.0215 0.0102* 0.0125 -0.0811* 0.0076 
Number hours caring 0.0689* 0.0468 0.0719* 0.0489 
Care outside household 0.0057* 0.0113 0.0059* 0.0118 
Has use of a car 0.1441* 0.0393 0.1504* 0.0409 
Weekly hours housework -0.1164* 0.0164 -0.1215* 0.0191 

Log likelihood -67,746.83 

Expected value 2.099  (0.0303) 

Conditional expected value 2.200  (0.0338) 

AIC (BIC) 135,572.66  (136,351.08) 

IR sigma 2.4280  (0.0071) 

Covariance – OP (se) 3.3930  (0.0630) 

Covariance – probit (se) 1.7810  (0.1171) 

Covariance  (se) 0.1677  (0.0409) 

Correlation  (se) -0.0272  (0.0333) 

OBSERVATIONS 51,713 

Notes: (i) # The marginal effects relate to the actual number of trips; (ii) * denotes statistical significance at the 5 or 1 percent level. 


