The University of Sheffield
News
Share: Share this on Facebook Share this on Twitter Share this on Google+

Sheffield team show simplicity is key to co-operative robots

  • Research has discovered way of getting thousands of robots to cluster together and carry out tasks
  • Until now, robotic swarms have required complex programming. These robots would be simple and cheap
  • Robot swarms could be used to monitor pollution levels or carry out hazardous tasks

A way of making hundreds - or even thousands - of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield.

The team, working in the Sheffield Centre for Robotics (SCentRo), in the University’s Faculty of Engineering, has programmed extremely simple robots that are able to form a dense cluster without the need for complex computation, in a similar way to how a swarm of bees or a flock of birds is able to carry out tasks collectively.

The work, published today (Thursday 17 April 2014) in the International Journal of Robotics Research, paves the way for robot ‘swarms’ to be used in, for example, the agricultural industry where precision farming methods could benefit from the use of large numbers of very simple and cheap robots.

A group of 40 robots has been programmed to perform the clustering task and the researchers have shown, using computer simulations, that this could be expanded to include thousands of robots.

Each robot uses just one sensor that tells them whether or not they can ‘see’ another robot in front of them. Based on whether or not they can see another robot, they will either rotate on the spot, or move around in a circle until they can see one.

In this way they are able to gradually form and maintain a cluster formation. The system’s ingenuity lies in its simplicity. The robots have no memory, do not need to perform any calculations and require only very little information about the environment.

Until now robotic swarms have required complex programming, which means it would be extremely difficult to miniaturise the individual robots. With the programming developed by the Sheffield team however, it could be possible to develop extremely small – even nanoscale – machines.

The Sheffield system also shows that even if the information perceived by the robots gets partially corrupted, the majority of them will still be able to work together to complete the task.

Roderich Gross, of SCentRo, explained: "What we have shown is that robots do not need to compute to solve problems like that of gathering into a single cluster, and the same could be true for swarming behaviours that we find in nature, such as in bacteria, fish, or mammals.

"This means we are able to ‘scale up’ these swarms, to use thousands of robots that could then be programmed to perform tasks. In a real world scenario, this could involve monitoring the levels of pollution in the environment; we could also see them being used to perform tasks in areas where it would be hazardous for humans to go. Because they are so simple, we could also imagine these robots being used at the micron-scale, for example in healthcare technologies, where they could travel through the human vascular network to offer diagnosis or treatment in a non-invasive way."

The researchers are now focusing on programming the robots to accomplish simple tasks by interacting with other objects, for example by moving them around or by sorting them into groups.

Additional information

1. "Self-Organized Aggregation without Computation", by Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, Roderich Gross, is published in the International Journal of Robotics Research. A copy of the paper is available on request.

2. Engineering in Sheffield
The Faculty of Engineering at the University of Sheffield - the 2011 Times Higher Education’s University of the Year - is one of the biggest and best engineering faculties in the UK. Its seven departments include over 4,000 of the brightest students and 900 staff, and have research-related income worth more than £50M per annum from government, industry and charity sources. Its research income recently overtook the University of Cambridge, confirming its status as one of the best institutions in the world to study engineering. The 2008 Research Assessment Exercise (RAE) confirmed that two thirds of the research carried out was either Internationally Excellent or Internationally Leading.

The Faculty’s expertise is extensive – its academic departments and two interdisciplinary programme areas cover all the engineering disciplines. They are leaders in their fields and outstanding contributors to the development of new knowledge, with world-leading academics linking their research to the teaching of the engineers of tomorrow.

The Faculty has a long tradition of working with industry including Rolls-Royce, Network Rail and Siemens. Its industrial successes are exemplified by the award-winning Advanced Manufacturing Research Centre (AMRC) and the new £25 million Nuclear Advanced Manufacturing Research Centre (NAMRC).

The Faculty of Engineering is committed to ensuring students studying at Sheffield continue to benefit from world-class labs and teaching space through the provision of the University's new Engineering Graduate School. This brand new building, which will become the centre of the faculty´s postgraduate research and postgraduate teaching activities, will form the first stage in a 15 year plan to improve and extend the existing estate in a bid to provide students with the best possible facilities while improving their student experience.

To find out more about Engineering in Sheffield, visit: Engineering

3. This work was supported by the Strategic Educational Pathways Scholarship (Malta), the European Union – European Social Fund (ESF), under Operational Programme II – Cohesion Policy 2007-2013, "Empowering People for More Jobs and a Better Quality of Life", and the Marie Curie European Reintegration Grant within the 7th European Community Framework Programme.

Contact

For further information please contact:

Shemina Davis
Media Relations Manager
The University of Sheffield
0114 222 5339
shemina.davis@sheffield.ac.uk