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Dualities and relations

Consider the following classical dualities.
> {algebraic sets in C"} = {radical ideals in C[x1, ..., xa] }"
> {intermediate extensions K C J C L} = {subgroups of Gal(L, K)}*
> {closed convex sets in IR”} = {'closed' sets of half spaces in ]R”}Op

> {upper closed subsets of Q} = {lower closed subsets of Q}Op [~ R]
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These all arise from a specified relation | C G x M between sets G and M.

We get maps between the ordered sets of subsets
P(G) = P(M)°P
Restricts to an ordered isomorphism on the ‘closed’ subsets.

PCl(G) = PCI(M)OP
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Dualities and relations

Consider the following classical dualities.
> {algebraic sets in C"} = {radical ideals in C[x1,...,xa] }*

G=C", M=Clxy,...,xp], xIpiff p(x) =0.
> {intermediate extensions K C J C L} = {subgroups of Gal(L, K)}*
G=L M=Aut(LK), Clgiff(l)=".
> {closed convex sets in R"} = {'closed’ sets of half spaces in R"}"
G =R", M = {half spaces in R"}, xI/H iff x € H.
> {upper closed subsets of Q} = {Iower closed subsets of Q}Op [~ R]
G=0Q M=Q, qlpiffqg<p.

These all arise from a specified relation | C G x M between sets G and M.
PCI(G) = PCI(M)OP
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Formal concept analysis

Here
G = some set of objects, M = some set of attributes

glm iff object g has attribute m
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Formal concept analysis

Here
G = some set of objects, M = some set of attributes

glm iff object g has attribute m
We get an isomorphism of posets
PCI(G) = PCI(M)OP

The elements of 'this' poset are called formal concepts.
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Monoidal categories

A monoidal category (V, ®,1) consists of a category }V with a monoidal
product ®: ¥V x V — V and unit 1 € Ob(V), together with appropriate
associativity and unit constraints.

category objects morphisms ® 1
Set sets functions x  {x*}
Top topological spaces continuous maps x  {x}
Vect vector spaces linear maps ® C
Ry [0, 0] a—biffa>b + 0
Truth {T,F} a—biffa=b & T
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Enriched category

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified set

C(a, b)
» for each a, b, c € Ob(C) a function
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) an element
id, € C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched category

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(Set)
» for each a, b, c € Ob(C) a morphism in Set
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) an element
id, € C(a, a)
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A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(Set)
» for each a, b, c € Ob(C) a morphism in Set
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) a morphism in Set
id,: {x} = C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched category

A V-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(V)
» for each a, b, c € Ob(C) a morphism in V
Oapbc: C(a,b) ®C(b,c) = C(a,c)
» for each a € Ob(C) a morphism in V

id,: 1 — C(a,a)

satisfying appropriate associativity and identity constraints.
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Examples of types of enriched categories

vV C(a, b) composition identity
Set set  C(a b)xC(b,c)—=C(a,c) {x}—C(aa)
Top space  C(a, b) xC(b,c) = C(a,c) {x} — C(a a)
Ry [0,00] C(a b)+C(b,c)>C(a,c) 0>C(aa)
Truth {T,F} C(a b)&C(b,c)=C(a,c) T=C(aa)
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Examples of types of enriched categories

vV C(a, b) composition identity
Set set  C(a b)xC(b,c)—C(a,c) id,€C(a a)
Top space  C(a, b) xC(b,c) = C(a,c) id, € C(a a)
Ry [0,00] C(a b)+C(b,c)>C(a,c) 0=C(aa)
Truth {T,F} C(a, b)&C(b,c)=C(a,c) T=C(aa)

An R -category is a generalised metric space: write d(a, b) := C(a, b).

[Fails to be a metric space as d(a, b) # d(b, a).]

A Truth-category is a preorder: write a < b iff C(a, b) = T.
[Fails to be a poset as (a < b) & (b < a) # a=b]
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More structure

v V-functor C—YV CRD%P sV

Set functor copresheaf profunctor

— distance - .

Ry cistance non X — [0, 9] cost function
increasing map

Truth order-preserving lower closed subset relation

function
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Even more structure

When V is particularly nice we can define [C, V] a V-category structure on
the collection of V-functors C — V.

» V = Set
objects are functors C — Set.
[C,Set](F, G) := natural transformations F to G
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Even more structure

When V is particularly nice we can define [C, V] a V-category structure on
the collection of V-functors C — V.

» V = Set
objects are functors C — Set.
[C,Set](F, G) := natural transformations F to G

» V=R,
objects are short maps C — [0, co].
d(F, G) :=sup.(G(c) — F(c))

> )V = Truth
objects are upward closed subsets
PL<QIiffPCQ
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Generalizing the relation-to-duality idea

> ), suitable category to enrich over,

» C, a V-category,

» D, a V-category,

» [: C°P®D — V a profunctor from C to D.

Get an adjunction of V-categories
[C°P, V]| = [D, V]°P
which restricts to an equivalence of V-categories
[C®, V]a = [D VI

We can think of this as a single V-category B(C, D, /).
This is called the profunctor nucleus [Pavlovic].
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Example 0: Classical Galois connections

» V = Truth,

» C =G, aset
» D= M, aset
>

| a relation between G and M.

Get the construction of an isomorphism of posets from a relation
PCI(G) = PCI(M)OP

We can think of this as a single poset B(G, M, I).
This gives all of the classical examples from the beginning.
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Example 1: Directed tight span

» V=R,

» C = a metric space,
» D=C,

» I(c,c’):=d(c, ).

The generalized metric space B(C,C, d) is the directed tight span of C.
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Example 2: Legendre-Fenchel transform

» V=R,

» C=1R",

» D = (R")" the dual space,
> I(x, k) := k(x).

Maps of generalized metric spaces: Legendre-Fenchel transform

{functions on R"} < {functions on (R")"}°P

{convex functions on IR"} = {convex functions on (IR")"}°P

11/13



Example 3: Fuzzy concept analysis

V = ([0,1],-,1), thought of as fuzzy truth values,

C = {objects},

D = {attributes},

I(g, m) € [0, 1], degree to which object g has an attribute m.

vV v v v

The resulting fuzzy poset is the fuzzy concept lattice.
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Example 4: Reflexive modules

» ) = Ab, the category of Abelian groups,

» C, a one object Ab-category,

» D=C,

» |: C°P x D — Ab is the corresponding ring R.

The adjunction is formed from the duality map Hom(—, R):

{left R-modules} < {right R-modules}°P.

The nucleus is

{reflexive left R-modules} =2 {reflexive right R-modules}°P.

13/13



