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“set with distances” = “metric space”
We have
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» some notion of distance 0 < djj < co between the ith and jth points.
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“set with distances” = “metric space”
We have

> a set of ‘points’

» some notion of distance 0 < djj < co between the ith and jth points.

For example:

Note: not every metric space can be thought of as points in Euclidean space.
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Metric space X with similarity matrix Zj := e~ %.

Define ‘weight’ (if possible) —oco < w; < oo at each point i so that
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Metric space X with similarity matrix Zj := e~ %.

Define ‘weight’ (if possible) —oco < w; < oo at each point i so that

Z Zijw; =1 for every j
J
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Define the magnitude by

|X|=ZW,'

If Z; is invertible then |X| =Y (Z71).

7
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As any space X is scaled bigger and bigger | X| — N.
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Example of bad metric space

IXI
o = N W O~ O

T

0.01 0.1 1 10 100

Many metric spaces are better behaved than this.
If Z is positive definite then |X]| is defined.

For example, if X is a subset of Euclidean space then |X| is defined.
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Diversity measures [Leinster, Cobbold]

Model our community using
> a metric space X with similarity matrix Zj
» a probability (or relative abundance) p; at the ith point.
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> a metric space X with similarity matrix Zj
» a probability (or relative abundance) p; at the ith point.

Effective number of species:
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Diversity measures [Leinster, Cobbold]

Model our community using

> a metric space X with similarity matrix Zj

» a probability (or relative abundance) p; at the ith point.
Effective number of species:

25 ¢
20 +
15 \
iD?(p) 10|
5,,
0 1 2

q
Recover various other measures of diversity using this.
For example, obtain Hill numbers when dj; = co (i.e. Z;; =0) for i # j.
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Leinster's maximazing result

Theorem
Let X be a symmetric metric space. So Z is symmetric.

» If Z is positive definite and there is a weighting with non-negative
weights (w; > 0), then
Dmax(z) = ‘X|

i.e., the magnitude is the maximum diversity for all q, and normalizing
the weights gives the maximizing probability distribution

» Otherwise

Dmax(Z) =

= max [Y].
Y CX&w; >0
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Summary of magnitude | X]|

Mathematically natural (if mysterious), c.f. category theory.
Related to biodiversity.
Seemingly related to geometry in Euclidean space.

vV v. v v

Can behave rather weirdly at times.
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Other size measures of metric spaces

» Get Hill Numbers by giving a probability space a dull metric.
» Get numbers for a metric space by giving a dull probability distribution.
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Other size measures of metric spaces

» Get Hill Numbers by giving a probability space a dull metric.
» Get numbers for a metric space by giving a dull probability distribution.

For example, analogue of species richness:
N , N 1
=Y (3 %)
i=1 Nj=1

Note: this is not the same as

XI=) > (2);"
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Example of bad metric space |l
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» The size °E(X) is defined for all metric spaces.
» As X is scaled up °E(X) increases from 1 to N.

» It is much easier to calculate °E£(X) than |X]|.
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Dimension

In a metric space we can scale all the distances.
What should happen to the size?

For example, double the distances:

21 = 2 times as big

22 = 4 times as big

Think of dimension as how the size changes when the distances are changed.
Given ‘size’ can see if it gives a good idea of dimension.
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Rectangles with 6400 points and ‘dimension’
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There is geometric information is °E(X).
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