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“set with distances” = “metric space”

We have

I a set of ‘points’

I some notion of distance 0 6 dij 6 ∞ between the ith and jth points.

For example:

SQ

NP

SP

6

6 6

6

12

12

Note: not every metric space can be thought of as points in Euclidean space.
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Magnitude [Leinster]
Metric space X with similarity matrix Zij := e−dij .

Define ‘weight’ (if possible) −∞ < wi < ∞ at each point i so that∑
j

Zijwj = 1 for every j

0.73
0.37

0.37

1

1
0.001

|X | ∼ 1.47

Define the magnitude by

|X | =
∑
i

wi

If Zij is invertible then |X | =
∑
ij
(Z−1)ij .
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Example of scaling

1000t

1000t
t

0.00010.001 0.01 0.1 1 10 100
0
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t

|X
|

As any space X is scaled bigger and bigger |X |→ N.
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Example of bad metric space
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|X
|

Many metric spaces are better behaved than this.

If Z is positive definite then |X | is defined.

For example, if X is a subset of Euclidean space then |X | is defined.
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Diversity measures [Leinster, Cobbold]

Model our community using

I a metric space X with similarity matrix Zij

I a probability (or relative abundance) pi at the ith point.

Effective number of species:

qDZ (p)

:=

Recover various other measures of diversity using this.
For example, obtain Hill numbers when dij = ∞ (i.e. Zij = 0) for i 6= j .
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( ∑
i :pi>0

pi (Zp)q−1
i

) 1
1−q

q 6= 1,

∏
i :pi>0

(Zp)−pi
i q = 1,

min
i :pi>0

1

(Zp)i
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Leinster’s maximazing result

Theorem
Let X be a symmetric metric space. So Z is symmetric.

I If Z is positive definite and there is a weighting with non-negative
weights (wi > 0), then

Dmax(Z ) = |X |

i.e., the magnitude is the maximum diversity for all q, and normalizing
the weights gives the maximizing probability distribution

pi :=
wi∑

wi

I Otherwise
Dmax(Z ) = max

Y⊂X&wi>0
|Y |.
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Summary of magnitude |X |

I Mathematically natural (if mysterious), c.f. category theory.

I Related to biodiversity.

I Seemingly related to geometry in Euclidean space.

I Can behave rather weirdly at times.
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Other size measures of metric spaces

I Get Hill Numbers by giving a probability space a dull metric.

I Get numbers for a metric space by giving a dull probability distribution.

qE (X ) := qDZ
((

1
N , . . . , 1

N

))
For example, analogue of species richness:

0E (X ) :=

N∑
i=1

( N∑
j=1

Zij

)−1

Note: this is not the same as

|X | =

N∑
i=1

N∑
j=1

(Z )−1
ij
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Example of scaling II
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Example of scaling II
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Example of bad metric space II

t

tt

tt

t

0.01 0.1 1 10 100
0

1

2

3

4

5

t

I The size 0E (X ) is defined for all metric spaces.

I As X is scaled up 0E (X ) increases from 1 to N.

I It is much easier to calculate 0E (X ) than |X |.
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Zooming in on a space with 6400 points
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Dimension

In a metric space we can scale all the distances.
What should happen to the size?

For example, double the distances:

21 =

2 times as big

22 =

4 times as big

Think of dimension as how the size changes when the distances are changed.
Given ‘size’ can see if it gives a good idea of dimension.
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Size of rectangles with 6400 points
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Rectangles with 6400 points and ‘dimension’
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There is geometric information is 0E (X ).
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