Measuring metric spaces: short sightedness
and population diversity
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How many things are there?
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Metric spaces

Definition
A metric space is a set X with a ‘distance’ dj; € [0, cc] between each pair of
points i, j € X such that

» triangle inequality: di < dj + dj

» no self-distance: dj =0 forall i € X
» separation: if / # j then dj # 0

» symmetry: dj = dj

Note
Not every metric space is embeddable in Euclidean space.
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Defining the cardinality (l)

Definition

If X is a finite metric space then (try to) define the cardinality | X| as follows.
1. Define the closeness (or similarity) matrix Z by Zj := e 9.

[Z is symmetric with entries in [0, 1] and 1s on the diagonal.]

2. Invert Z (if possible).
3. Define |X| as the sum of the entries of Z~1.

For t € (0, 00) let tX be X scaled by a factor of t.

Define the cardinality function of X to be |tX|.
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Some obvious conjectures

Conjecture

» Every finite metric space has a cardinality.

» |tX| is an increasing function of t.

» If X has n points then 1 < |X| < n.

» If all distances are finite then |tX| — 1 ast — 0.
» If X has n points then |[tX| — nast — oo.

Theorem
For any X with n points there exists a ty such that fort > ty the cardinality
|tX| exists, is increasing and tends to n as t — oc.
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Defining the cardinality (ll)

Definition
Given a finite metric space X, a weighting on X is a number w; € R for each
point i € X such that

d e lw=1 forallic X, ie Zw=
JjeX 1
If X has a weighting w then define |X| := )", w;.
Theorem

» If a weighting exists then it is unique.
> If Z is invertible then w; := 3 ,(Z —1; is a weighting.

Note

» The weights do not have to be positive!
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Diversity measures (preliminaries)

Definition

» A probability metric space is a finite metric space X with p; € [0, 1] for
each i€ Xsuchthat) p = 1.

» The mean closeness of i € X is
>_,¢ b = (20);

This is a measure of the amount of stuff near i.

» A surprise function is a decreasing function o : [0, 1] — [0, co] with
o(1) =0.

Example
There is a useful family o, of surprise functions.
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p— a € [0,00)

oa(p) =
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Definition
If (X, p) is a probability metric space then the a-diversity
(or expected a-surprise) is

Da(X,p) =Y pioa((2p))-

The a-cardinality |(X, p)|. is the ‘number’ of distinct equi-probable species
that would give the same expected «a-surprise.

Example
_ pi B 1
|(X’p)’0_z(zp)/ ‘(X?p)h - H(Zp)ipi
1 1
‘(Xap)’2:m ‘(X7P)|OOZW



Diversity measures and cardinality

Note
In the case of a discrete space (all the points infinitely far apart), for all « the
a-cardinality is maximized by the uniform probability and takes value n.



Diversity measures and cardinality

Note
In the case of a discrete space (all the points infinitely far apart), for all « the
a-cardinality is maximized by the uniform probability and takes value n.

Theorem
If X is a finite metric space with a positive weighting w, then p; := & is a
probability measure and

|(X,P)|la = |X|  forall .



Diversity measures and cardinality

Note
In the case of a discrete space (all the points infinitely far apart), for all « the
a-cardinality is maximized by the uniform probability and takes value n.

Theorem
If X is a finite metric space with a positive weighting w, then p; :=
probability measure and

wi

isa
[X]

|(X,P)|la = |X|  forall .

In many cases | X| maximizes the cardinality.



Diversity measures and cardinality

Note
In the case of a discrete space (all the points infinitely far apart), for all « the
a-cardinality is maximized by the uniform probability and takes value n.

Theorem
If X is a finite metric space with a positive weighting w, then p; :=
probability measure and

wi

isa
[X]

|(X,P)|la = |X|  forall .

In many cases | X| maximizes the cardinality.

So it looks like a weighting on a metric space is analogous to the uniform
distribution on a set of points.
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Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by
approximating with a finite set of points.
Example

Let L, be a line segment of length a.
Approximate by a set of points: take 2’1””1 d; = aand let Xy be

d1 d2 dn—1
[ J [ ) e...0 [ ]

| X4| = (Ztanh d,-) +1—-a+1 as max{d;} — 0.

So we can define the cardinality of the length a line segment
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Approximating the circle

Let C, be the circle of circumference a (with the metric induced from R?).
Approximate by a symmetric set of points:

@

Find that as the number of points tends to infinity we can define
1

Cof = ————
| a| fO1 e—2aD(s)dsg

|Cal =1 asa—0

|Cal—a—0 asa— o
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Intrinsic volume

Definition
An invariant valuation p on (polyconvex) subsets of R is a (continuous,
motion invariant) R-valued function such that

> w(AU B) = p(A) + u(B) — (AN B).

Theorem (Hadwiger’s Theorem)

There is a canonical basis {jim, ..., o} of invariant valuations on subsets of
R™ and these have the scaling property 11;(tA) = t'ui(A).

Example

» um = usual (Lebesgue) volume

> [im—1 = y"surface area”

» 1o = Euler characteristic

Theorem
The Wills function W(A) := pum(A) + um—1(A) + - - - + po(A)
is multiplicative: W(A x B) = W(A) x W(B).
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Asymptotic conjecture

unit ball in R3

A W(A)
finite collection of points - (number of points)
closed interval _— (length) + 1
polygon G (perimeter)
filled polygon . (area) + %(perimeter) + 1
®

%W+27r+4+1

Conjecture
The cardinality can be defined for any compact subset of R" and

|tA| — W(tA) - 0 as t— oc.
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