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Magnitude of finite metric spaces
Finite metric space (A,d): weight w: A — R such that

Ze*d(a'b)w(a) =1 for every b € A.

Define the magnitude by |A|=) _w(a).

tA:= o —80.001t
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If A has N points then |[tA| — N as t — co.
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What happens when try to approximate an infinite subset of R"?
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There can be poorly behaved metric spaces, but restrict to subsets of R”.
What happens when try to approximate an infinite subset of R"?

S, = n? pts on the width £ square

L, := n pts on the length { interval
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As n— oo, |Ln| — 5 +1.
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Extending to infinite metric spaces

There can be poorly behaved metric spaces, but restrict to subsets of R”.
What happens when try to approximate an infinite subset of R"?

S, = n? pts on the width £ square

L, := n pts on the length { interval

As n— oo, |Ln| — 5 +1.
22
As n— o0, Syl ~ o +....
Definition/ Theorem. If X C R” is compact and A, — X in the Hausdorff
topology then we can define | X|:=lim,|A.l|.
Magnitude knows about things such as volume and Minkowski dimension.
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Better definition of magnitude?

For X metric space, a weight measure is a signed measure on X such that
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Better definition of magnitude?

For X metric space, a weight measure is a signed measure on X such that
J e 48l qw(x) =1 for every s € X.
X

Then | X| = fxdw(x).
Unfortunately these don't exist in general!

The problem is the limit of signed measures is not necessarily a measure.
For example, on R consider (1), with w; =i(61—8;_1).

1
J f(x)dp, = f(l)_f(l_) S f'(1) asi— oo.

The association f — f/(1) is not the integration of a measure.
It is something more general: the evaluation of a distribution.
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Distributions

A distribution on R" is a linear functional on some suitable class of functions.
Write (w, f) for the evaluation of a distribution w on a function f.
Eg.

(i) For each signed measure p we have an associated distribution with

wi)i=| fdu

(ii) For a cooriented, smooth, codim 1 submanifold £ C R”, and i € N

(w;, )= L a?\:" f(x) dx,

where a% means derivative in the normal direction to the submanifold.

5/13



Weight distributions

Suppose X C R" is compact. A weight distribution w is a distribution
supported on X such that

(w,e74 )y =1 for every s € X.

The magnitude of X is given by |X| = (w,1).
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Weight distributions

Suppose X C R" is compact. A weight distribution w is a distribution
supported on X such that

(w,e74 )y =1 for every s € X.

The magnitude of X is given by |X| = (w,1).

Try to calculate the magnitude of a non-trivial space!
Guess a weight distribution for B, the radius R ball of dimension n=2p+1.

1 P o'
w,f) = J fdx—+ B;(R)J -f dx
< ) nlw, < xEBR % x€Sp ov'

Need to solve the weight equation for every s € Bj to find (B;(R))f.’zo.
Then

BRI =L (R"+nBo(R)R™ ).
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The Key Integral

1
nlw,

J e *=sldx for s e B
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The Key Integral

1
J e *sldx for s e Bp
nwn Jxesp

Theorem
Forn=2p+1, R>0 ands=|s| <R, then

1 e (_1)pefR P p
Ix S‘(l S P A (R)t:
nlwp LGS” 1e X 2Ppl % i XP-H( )Ti(s).

modified spherical Bessel functions-ish

Reverse Bessel polynomials
To(s) =cosh(s);

Xo(R) = (s _ _sinh(s)
x1(R) = ! s
x2(R) =R?+R; Tz(ﬂ:@,ﬁnh;sj;
S s
2
X3(R) =R*+3R? 43R sinh(s)  3cosh(s) 3sinh(s)
3 2 w3(s) =——3—+ ) - 5
x4(R) = R* +6R3 +15R? +15R. s s s
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Solving the weight equations

Trying to solve the weight equation for every s € 5,’{,*1 gives a linear system.

Xp(R)  8xp(R) ... 8PXxp(R) Bo(R) Xpi1(R)/R
Xp+1(R) 8Xpt1(R) ... 8PXxp+1(R) B1(R) B Xp+2(R)/R
X20(R) 8X2p(R) ... 8Px2p(R) B»r(R) X2p+1(R)/R

But remember the magnitude has the following form.
BRI =4 (R"+nBo(R)R"1),

So we can add this to our linear system.

xp(R)  8%p(R) ... &Pxp(R) © Bo(R) Xp+1(R)/R
Xp1(R) 8Xpr1(R) ... 8PXpr1(R) O B1(R) Xp2(R)/R
x2p(R) 8x2p(R) .. 5Pxan(R) 0 | | Bol(R) X2pe1(R)/R
—nRn1 0 0 n! |BE| R"

Now use Cramer's Rule...
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The answer

x2(R)  x3(R) ... xp+2(R)
x3(R)  x4(R) ... xp+3(R)
some matrix of . .
Ba— derivatives of ;(R)s|
R | |some other matrix of]

™ | derivatives of Xi(R)s

Xp+2(R) Xp+3(R) .. X2ps2(R)
)

Xo(R) x1(R) ... xp(R
x1(R) x2(R) ... Xp+1(R)

n!
Xp(R) Xpr1(R) ... X2p(R)

[Determinants with constant antidiagonals are called Hankel determinants.]
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The answer

x2(R)  x3(R) ... xp+2(R)
x3(R)  x4(R) ... xp+3(R)
some matrix of . .

B2 derivatives of x;(R)s
R | |some other matrix of|

™ | derivatives of Xi(R)s

Xp+2(R) Xp+3(R) .. X2ps2(R)
R)

xo(R) x1(R) ... xpl
x1(R) x2(R) ... Xp+1(R)

n!
XpER) Xp+1(R) X2p(R)
[Determinants with constant antidiagonals are called Hankel determinants.]
|BR| =R+1
}3’3?} _ R3+6R23!+12R+6

}35 } __ R®°+18R5+135R*+525 R3+1080 R24+1080 R+360
R| — 5T(R+3)

} B? } __ R1©440R%94720R8+-.-4+1814400R% 1209600 R+302400
Rl — 71 (R3+12R2+-48R+60)

Lots of things about these not (immediately) explained by the formula...
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Combinatorial interpretation of reverse Bessel polynomials

A length { weighted Schréder path is a lattice path from (x,0) to (x+¢,0)
of a certain form:
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Combinatorial interpretation of reverse Bessel polynomials

A length { weighted Schréder path is a lattice path from (x,0) to (x+¢,0)
of a certain form:

Theorem (Favreau/Sokal)

Xi+1(R)/R=>  wly)

v length 2i

Example

2, 1.1 1 R 1 1
x3(R)/R=#{ /N2 AR AR <1 RAL RR _p2i3pi3
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Combinatorial interpretation of the determinants
Theorem (Rough version of Lindstrom-Gessel-Viennot Lemma)

» Let G be a weighted, directed, acyclic graph.

> Let M;; denote the weighted count of paths from K to L;.

» Suppose {K,-}f-‘ o and {Lj}j-‘:o be two sets of vertices in G.

» Then subject to some condition on the vertices, the determinant

is the weighted count of all disjoint collections of k+1 paths joining K;
tol; fori=0,..., k.

Each x;(R) is a count of lattice paths.

Corollary

» The Hankel determinants det[x;+j+2(R)]fj:0 and det[x;+j(R)]ﬁj:0 are
counts of disjoint collections of lattice paths.

» Thus so are the numerator and denominator of‘B[{,}.
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Combinatorial interpretation of the determinants (ctd)

You end up with very nice expressions for the numerator and denominator.
For example,

numerator ‘ Bg‘ =L

=R*+6R?*+12R+6
We now have a combinatorial interpretation of each of the coefficients:
[Bh|=R+1

|B}| = R3+6R2+12R+6

RI — 3!

|B5 | __ R®+18R51135R*+525 R311080 R2+1080 R+360
Rl — 5T(R+3)

| B | __ R'+40R9+720R® +---+1814400R?+1209600R +302400
R 71 (R3+12R2+48R+60)
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The payoff

|BE|=R+1

|B3| _ R34+6R?112R+16
Rl — k]l

|55 | __ R®+18R54135R*+525 R31+1080 R2+1080 R+360
RI — 5T(R+3)

| B | _ RY.4+40R%+720R® + - 1+1814400R?+1209600R +302400
R 7! (R3+12R2+48R+60)

Theorem

» Both numerator and denominator are monic polynomials of the obvious
degrees with positive integer coefficients.

> ‘B,’%‘—)l as R — 0.
> |BA| = (R” M?”R”*—FMR” 24 ) as R — oo.
Theorem (Gimperlein-Goffeng)

Suppose X € R" is a smooth domain with n=2m—1 then as R — o

R X~ k- (vol(X)R" + c1vol QX)R" " + ¢ TMC(dX)R" 2 +--).
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