Dr Sean Anderson

Senior Lecturer

Photo of Sean Anderson

Dept of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street
S1 3JD
United Kingdom

Tel: (+44) (0)114 222 5608(+44) (0)114 222 5608
Fax: (+44) (0)114 222 5683
Email: s.anderson@sheffield.ac.uk

Sheffield Robotics Logo Small

Eye and Eye-Robot


anderson j physiol front cover robot rat 2014

anderson sci trans med front cover neutrophils


Dr Sean Anderson is a senior lecturer in the Department of Automatic Control and Systems Engineering, University of Sheffield; He received the MEng degree in Control Systems Engineering from the Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K., in 2001, and the PhD degree from the Department of Chemical and Process Engineering, University of Sheffield, in 2005. He then moved to the Centre for Signal Processing in Neuroimaging and Systems Neuroscience at the Department of Psychology, University of Sheffield, where he worked as a Research Associate from 2005-2010. He moved to the Department of Automatic Control and Systems Engineering in 2010 where he is currently pursuing research themes in bioinspired robotics as well as adaptive and optimal control in biological systems.


  • ACS124 Modelling, Analysis and Control
  • ACS1241 Introduction to Systems Analysis and Control
  • BIE101 Introduction to Bioengineering
  • ACS340 Biomechatronics
  • ACS6340 Biomechatronics

Research Interests

  • Linear, Nonliner and Spatiotemporal System Identification
  • Robotics and Biomechatronics
  • Theoretical Neuroscience and Computational Biology

Research Experience

  • Research Associate in Complex Systems and Signal Processing Group, Dept of ACSE, Univ of Sheffield, 2010-2011.
  • EU FP7 project "Biomimetic Technology for Vibrissal Active Touch" (Biotact), 2009-2010.
  • EPSRC project "Functions of Distributed Plasticity in a Biologically-Inspired Adaptive Control Algorithm: From Electrophysiology to Robotics" (Eyerobot), 2005-2008.

Funding Awards

Major Grants

  • EU H2020, Dreams4Cars - Dreamlike Simulation Abilities for Automated Cars (Sheffield PI), Jan 2017-Dec 2019, EUR 4 million.
  • EU FP7, NoTremor - Virtual, Physiological and Computational Neuromuscular Models for the Predictive Treatment of Parkinson’s Disease (CI), Jan 2014-Dec 2016, EUR 2.9 million.
  • EPSRC, Assessing the Underworld - An integrated performance model of city infrastructures (EP/K021699/1) (CI), Jun 2013-May 2017, £5,782,838.
  • EPSRC, Bioinspired Control of Electro-Active Polymers for Next Generation Soft Robots (EP/I032533/1) (CI), Jan 2012-Jul 2015, £1,081,051. http://www.bellaproject.co.uk/

Pilot Funding, Feasibility Studies and Equipment Grants

  • Royal Society Equipment Grant, Oct 2013-Sep 2014, £15,000.
  • Insigneo Bursary for Clinical Translation, funded by Sheffield Hospitals Charity Trust. Gastric Surface Mapping for Future Automated Approaches to Wireless Capsule Endoscopy of the Upper Gastrointestinal (GI) Tract, Dec 2013-Apr 2014, £15,500.
  • Engineering for Life award, funded by the University of Sheffield. Towards a smart vest for sensing and actuation of wireless capsule endoscopes (PI), Oct 2012-Mar 2013, £31,741.
  • Peninne Water Group, University of Sheffield. Developing ultrasound sensing technology to assess infrastructure and soil conditions external to buried pipes, Sep 2012-Jan 2013, £15,000.

Selected Journal Publications

Linear, Nonlinear and Spatiotemporal System Identification

  • P. Aram, V. Kadirkamanathan, S. R. Anderson, (2015). Spatiotemporal system identification with continuous spatial maps and sparse estimation. IEEE Transactions on Neural Networks and Learning Systems. Vol. 26, No. 11, 2978-2983. http://dx.doi.org/10.1109/TNNLS.2015.2392563
  • T. Baldacchino, S. R. Anderson, V. Kadirkamanathan (2013). Computational system identification for Bayesian NARMAX modellling. Automatica. Vol. 49, No. 9, 2641-2651. http://dx.doi.org/10.1016/j.automatica.2013.05.023
  • T. Baldacchino, S. R. Anderson, V. Kadirkamanathan (2012). Structure detection and parameter estimation for NARX models in a unified EM framework. Automatica. Vol. 48, No. 5, 857–865. http://dx.doi.org/10.1016/j.automatica.2012.02.021
  • V. Kadirkamanathan, S. R. Anderson (2008). Maximum-likelihood estimation of delta-domain model parameters from noisy output signals. IEEE Transactions on Signal Processing, vol. 56, 3765-3770. http://dx.doi.org/10.1109/TSP.2008.920443 
  • S. R. Anderson, P. Dean, V. Kadirkamanathan, C. R. S. Kaneko, J. Porrill (2007). System identification from multiple short-time-duration signals. IEEE Transactions on Biomedical Engineering, vol. 54, pp. 2205-2213. http://dx.doi.org/10.1109/TBME.2007.896593
  • S. R. Anderson, V. Kadirkamanathan (2007). Modelling and identification of non-linear deterministic systems in the delta-domain. Automatica, vol. 43, pp. 1859-1868. http://dx.doi.org/10.1016/j.automatica.2007.03.020

Robotics and Biomechatronics

  • C. Georgiou, S. R. Anderson, T. J. Dodd (2017). Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping. International Journal of Robotics Research (In Press). https://doi.org/10.1177/0278364916687027
  • E. Wilson, T. Assaf, M. J. Pearson, J. Rossiter, S. R. Anderson, J. Porrill, P. Dean (2016). Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle. Journal of The Royal Society Interface, 13(122), 20160547. http://dx.doi.org/10.1098/rsif.2016.0547  
  • E. Wilson, T. Assaf, M. Pearson, J. Rossiter, Dean, P., S. R. Anderson, J. Porrill (2015). Biohybrid control of general linear systems using the adaptive filter model of cerebellum. Frontiers in Neurorobotics, 9. http://dx.doi.org/10.3389/fnbot.2015.00005
  • W. Jacobs, E. Wilson, T. Assaf, J. Rossiter, T. Dodd, J. Porrill, S. R. Anderson (2015). Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis. Smart Materials and Structures, 24, 055002. http://dx.doi.org/10.1088/0964-1726/24/5/055002
  • S. R. Anderson, M. J. Pearson, A. G. Pipe, T. J. Prescott, P. Dean, J. Porrill (2010). Adaptive cancellation of self-generated sensory signals in a whisking robot. IEEE Transactions on Robotics. Vol. 26, No. 6, 1065-1076. http://dx.doi.org/10.1109/TRO.2010.2069990
  • A. Lenz, S. R. Anderson, A. G. Pipe, C. Melhuish, P. Dean, J. Porrill (2009). Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 39, No. 6, 1420-1433. http://dx.doi.org/10.1109/TSMCB.2009.2018138

Theoretical Neuroscience and Computational Biology

  • J. Stahl, Z. Thumser, P. May,  F. Andrade, S. R. Anderson, P. Dean, (2015). Mechanics of mouse ocular motor plant quantified by optogenetic techniques. Journal of Neurophysiology, Vol. 114, No. 3, 1455-1467. http://dx.doi.org/10.1152/jn.00328.2015
  • Anne L. Robertson, et al. (2014). A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Science Translational Medicine, Vol. 6, Issue 225, 225ra29. http://dx.doi.org/10.1126/scitranslmed.3007672
  • P. Dean, S.R. Anderson , J. Porrill and H. Jörntell (2013). An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?. The Journal of Physiology, vol. 591, issue 22, 5459-5474. http://dx.doi.org/10.1113jphysiol.2013.261545
  • J. Porrill S. R. Anderson, P. Dean (2013). Adaptive filters and internal models: Multilevel description of cerebellar function. Neural Networks, 47: 134-149. http://dx.doi.org/10.1016/j.neunet.2012.12.005
  • S. R. Anderson, J. Porrill, M. J. Pearson, A. G. Pipe, T. J. Prescott, P. Dean (2012). An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular Roles in Sensory Processing. PLoS ONE, 7(9): e44560. http://dx.doi.org/10.1371/journal.pone.0044560
  • K. Krishnanathan, S. R. Anderson, S. A. Billings, V. Kadirkamanathan (2012). A Data-Driven Framework for Identifying Nonlinear Dynamic Models of Genetic Parts. ACS Synthetic Biology. http://dx.doi.org/10.1021/sb300009t
  • G. R. Holmes, S. R. Anderson, G. Dixon, A. L. Robertson, C. C. Reyes-Aldasoro, S. A. Billings, S. A. Renshaw, V. Kadirkamanathan (2012). Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. Journal of the Royal Society Interface 9, 3229-3239. http://dx.doi.org/10.1098/rsif.2012.0542
  • V. Kadirkamanathan, S. R. Anderson, S. A. Billings, X. Zhang, G. R. Holmes, C. C. Reyes-Aldasoro, P. M. Elks, S. A. Renshaw (2012). The neutrophil's eye-view: inference and visualisation of the chemoattractant field driving cell chemotaxis in vivo. PLoS ONE, Vol. 7, No. 4, e35182. http://dx.doi.org/10.1371/journal.pone.0035182
  • S. R. Anderson, N. Lepora, J. Porrill, P. Dean (2010). Nonlinear dynamic modelling of isometric force production in primate eye muscle. IEEE Transactions on Biomedical Engineering. Vol. 57, No. 7, 1554-1567. http://dx.doi.org/10.1109/TBME.2010.2044574
  • S. R. Anderson, J. Porrill, S. Sklavos, N. J. Gandhi, D. L. Sparks, P. Dean (2009). Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation. Journal of Neurophysiology, 101, 2907-2923. http://dx.doi.org/10.1152/jn.91045.2008