Aerospace and Transport

Our work seeks to reduce operating costs, fuel consumption and environmental impacts and improve performance. We aim to achieve this through the development of active flow control, noise reduction and autonomous technologies, health monitoring, through-life system optimization solutions, model-based systems engineering, multidisciplinary modelling and control.

Case Study:

A New Design Methodology for Civil Aero-Engine Control

Rolls Royce

Civil aero-engine dynamics vary with flight and power conditions, and a lengthy design and verification process is required to meet the specification for all conditions.

ACSE researchers have developed a unified design methodology for tuning gas turbine engine controllers, which is now being used by Rolls-Royce across its latest fleet of Civil Aero Trent engines. Trent engines are used to power, for example, Boeing 787 Dreamliner aircraft that have been adopted by the world’s leading airlines.

This research was carried out at the Rolls Royce University Technology Centre (UTC). During the course of the research programme within the UTC, besides demonstrating the enormous practical advantages of this new design, difficult tuning and architectural problems were overcome by the introduction of a number of practical innovations.

This new design methodology has made an economic impact through the introduction of a new process for tuning gas turbine engine controllers. Indicators of impact are:

  • a new design practice, resulting in a unified approach for different projects,
  • reduced development effort by shortening and simplifying the design exercise and rendering it suitable for modular insertion, and
  • streamlined verification requirements.

Over 20 customers have selected the Trent 1000 to power their 787 Dreamliners and these include All Nippon Airways, Air China, Air Europa, Air New Zealand, British Airways, Delta, Icelandair, International Lease Finance Corporation, LOT, Thai Airways and Virgin Atlantic.