Dr Jarema Malicki

Jarema Malicki

Reader in Developmental Genetics
Department of Biomedical Science
The University of Sheffield
Firth Court
Western Bank
Sheffield S10 2TN
United Kingdom

Room: D18 Firth Court
Telephone: +44 (0) 114 222 4638
Email: j.malicki@sheffield.ac.uk

Bateson CentreCMIAD


Developmental Biology
Cell Biology and Cancer

General

Brief career history

  • 2013-present: Reader, University of Sheffield
  • 2012-present: Senior Research Fellow, University of Sheffield
  • 1996-2010: Assistant Professor, Harvard Medical School, USA
  • 1993-1996: Postdoctoral Fellow, Harvard Medical School, USA
  • 1989-1993: Yale University, USA, Ph.D.
  • 1987-1988: Bates College, USA
  • 1983-1987: Warsaw University, Poland

Research interests

Eukaryotic cilia are fascinating highly polarized cell surface features that frequently detect and/or process extracellular signals, including small molecules, light, and polypeptides. We aim to understand how signal transduction mechanisms are assembled in cilia and how they function is processes as diverse as embryonic patterning, vision, and metabolism.

The laboratory has also some interest in other aspects of cell polarity, such as membrane subcompartmentalization and organelle positioning in cell’s cytoplasm.

Professional activities

  • Reviewer for journals: Development, Developmental Cell, EMBO Journal, Human Molecular Genetics, Human Genetics, Journal of Clinical Investigation, Journal of Neuroscience, Neuron, PloS Genetics, & others.
  • Reviewer for funding bodies: Canada Foundation for Innovation (Canada), Fundação para a Ciência e a Tecnologia (Portugal), Medical Research Council (UK), Narodowe Centrum Nauki (Poland), National Institutes of Health (USA), National Science Foundation (USA), KidneyResearchUK,  Biotechnology and Biological Sciences Research Council (UK).

Full publications

Research

Ciliogenesis and Cell Polarity

Our laboratory has extensive experience in the use of both forward and reverse genetics in zebrafish. We have cloned and characterized numerous mutant loci. More recently, we have used CRISPR nucleases to mutate several groups of loci that regulate ciliogenesis. These loci include protein deacetylases, phosphoinositide metabolizing enzymes, and regulators of apico-basal cell polarity.

We use several types of microscopy to visualize cilia: conventional confocal microscopy, selective plane illumination microscopy (SPIM), and stochastic optical reconstruction microscopy (STORM).

To identify binding partners of ciliary proteins, we use tandem affinity purification (TAP) followed by mass spectrometry and yeast two-hybrid screens. We also use mass spectrometry to identify post-translational modifications, such as acetylation, on ciliary proteins.

banner

Funding

  • BBSRC
  • MRC
  • Fight for Sight
  • British Heart Foundation
  • NIH
Teaching

Undergraduate and postgraduate taught modules

Level 3:

  • BMS326
  • BMS349 Extended Library Project
  • BMS369 Laboratory Research Project

Masters (MSc):

  • BMS6055 Modelling Human Disease
Opportunities

Postgraduate PhD Opportunities

We advertise PhD opportunities (Funded or Self-Funded) on FindAPhD.com

For further information and details of other projects on offer, please see the department PhD Opportunities page:

PhD Opportunities

Selected publications

Journal articles