Dr Shan-Shan Huang

shan-shan-260x390

Senior Lecturer in Structural Engineering

Department of Civil and Structural Engineering
Sir Frederick Mappin Building
Mappin Street, Sheffield, S1 3JD

Telephone: +44 (0) 114 222 5727
Fax: +44 (0) 114 222 5700

Email: s.huang@sheffield.ac.uk
Room: F111c

Qualifications

Fellow of the HEA, PhD, MSc, BEng

Profile

Shan-Shan Huang is a Senior Lecturer in the Department of Civil and Structural Engineering of the University of Sheffield. Apart from teaching Structural Engineering, she conducts research on Structural Fire Engineering - Trying to answer questions like "What happens to structures in fire?" "How can we improve the current fire engineering practices, in terms of safety, efficiency, sustainability, etc.?"

Her current research focuses are:

  • Sustainable concrete in fire, e.g. prevent explosive spalling using recycled tyre fibres;
  • Fire resistance of greener building systems - e.g. engineered timber in fire.
  • Robustness and the prevention of disproportionate progressive collapse of high-rise building structures in fire – e.g. steel beam-to-columns connection and composite slabs.

She obtained her MSc (Distinction) degree in Steel Construction in 2005 and completed her PhD "The Effects of Transient Strain on the Strength of Concrete-Filled Columns in Fire" in 2009, both from the University of Sheffield. She then carried on working as a Post Doctoral Research Associate on the European collaborative project COMPFIRE (Design of Joints to Composite Columns for Improved Fire Robustness) before taking up a Lecturer post.

Robustness

  • Behaviour of connections and their influence on frame response
  • Progressive collapse of steel/composite buildings in fire

Concrete in Fire

  • Transient strain / load-induced thermal strain of concrete
  • High-temperature concrete spalling
  • Edge cracking of composite slabs

Activities and Distinctions

  • Member of RILEM Technical Committee 256-SPF: Spalling of concrete due to fire: testing and modelling
  • Principle investigator (PI) of research project “FIRECRACKER - Reuse of Waste Polymer Fibres for Crack-Resistant and Fire-Spalling-Proof Sustainable Concrete” (funded by Horizon 2020, £185,798)
  • Co-investigator of research project “Smoke Control and Structural Resilience of Tunnels in Fire” (funded by The Royal Society, £34,442)
  • UoS PI of research project “Re-Use of Waste Tyre Fibres in Concrete Construction” (funded by Innovate UK, £544,186)
  • PI of research project “Sustainable Fire-Spalling-Resistant Concrete” (funded by EPSRC, £124,760)
  • PI of research project “IGNIS - Reuse of Tyre Fibres for Fire-Spalling-Proof Concrete” (funded by Horizon 2020, £158,323)
  • PI of research project “Performance-Based Structural Fire Engineering & Robustness of Structures subject to Multiple Hazards” (funded by Chinese Government, £77,881)
  • Fellow of The Higher Education Academy

Selected Publications

Journal articles

Conference proceedings papers

  • Huang SS, Burgess IW & Davison JB (2011) A structural fire engineering prediction for the Veseli fire tests, 2011. Proc. Applications of Structural Fire Engineering (pp 411-416). Prague RIS download Bibtex download