

The AHEAD Study: Managing anticoagulated patients who suffer head injury

Suzanne Mason^{1,2}, Maxine Kuczawski ¹, Matthew Stevenson¹, Dawn Teare¹, Michael Holmes¹, Shammi Ramlakhan¹, Steve Goodacre^{1,2}, Rosemary Harper, Francis Morris²

- 1. School of Health and Related Research, University of Sheffield
- 2. Sheffield Teaching Hospitals NHS Foundation Trust

The problem

- Head injury is a common problem in emergency departments, worldwide
- ~1% UK population receives anticoagulation therapy
- Most commonly prescribed oral anticoagulant, Warfarin
- Anticoagulated patients who suffer head injury:-
 - Increased risk of suffering serious complications But how big?
 - Lack of evidence on how patients should be managed
- Prospective research needed to gain understanding of complications and develop management strategies

NICE Guidance: old & new

NICE Guidance CG56, 2007

CT head scan patients with any of the following risk factors <u>within 1 hour</u>:

- GCS<13
- GCS<15 at 2 hours
- Open or depressed skull fracture
- Sign of fracture at base of skull
- Post-traumatic seizure
- Focal neurological deficit
- >1 episode of vomiting
- Amnesia >30minutes before impact

CT head scan patients that have experienced LOC or amnesia <u>AND</u> any of the following risk factors:

- Within 8 hours
 - Aged 65 years or over
 - Dangerous mechanism of injury
- <u>Within 1 hour</u>
 - Coagulopathy

NICE Guidance CG176, 2014

CT head scan with any of the following risk factors within 1 hour:

- GCS<13
- GCS<15 at 2 hours
- Open or depressed skull fracture
- Any sign of basal skull fracture
- Post-traumatic seizure
- Focal neurological deficit
- >1 episode of vomiting

CT head scan patients that have experienced **LoC** or **amnesia** <u>AND</u> any of the following risk factors:

- Within 8 hours
 - Aged 65 years or over
 - History of bleeding or clotting disorders
 - Dangerous mechanism of injury
 - >30 minutes retrograde amnesia of events

CT head scan patients with no other indications for CT head scan <u>AND</u> having <u>warfarin treatment</u>, <u>within 8 hours</u>

Current Evidence

	No. of patients in	% of patients	
Study	study	anticoagulated	Incidence of ICH in anticoagulated patients
Li, 2001	144	100% (144)	6.2%
Lavoie, 2004	384	9% (35)	incidence of ICH not measured - mortality only
Fabbri, 2004	501	13% (66)	24%
Reynolds, 2003	32	100% (32)	25%
Gittleman, 2005	89	100% (89)	30.4% if GCS ≤ 14, 0% if GCS =15
Menditto, 2011	97	100% (97)	27.6%
Nishiijima, 2012	1064	72.2% (768)	5.1%

Study aims

- Identify and determine incidence of clinically significant outcomes
- Identify predictors of adverse outcomes
- Identify cost-effectiveness of different models of care
- Develop robust clinical guidance to reduce risk of complication and death

Setting & participants

- 33 acute hospital trusts with Type 1 Emergency Departments (EDs) throughout the UK
- Patient inclusion criteria:-
 - Aged 16 years and older
 - Anticoagulated, prescribed Warfarin only
 - Presenting with a head injury (defined as a clinically apparent injury to the head including facial trauma) within the preceding 48 hours of ED attendance.
- Study sample size 3,000 patients based on 5% estimated complication rate

Study process

- **Primary outcome** Incidence of clinically significant brain injury defined by:-
 - Head injury-related death
 - Neurosurgery resulting from the initial injury
 - Clinically-significant CT head scan
 - Re-attendance to the ED with related significant complication (up to 10 weeks after the original attendance)

• Secondary outcomes :-

- Identification of predictors of adverse clinical outcome
- Costs per patient of the head injury as managed in the participating centres and when applied to a derived 'ideal' model

Recruitment

- Total sites (England & Scotland) = 33
- Total number of patients = 3,566

- Figure excludes withdrawals (154)

Clinical records (anonymised) = 3,534 (99%)

Patients

Research.				
		N (3534)	%	
	Male	1738	49.2	
	Age (Mean (SD))	78.5 (11.6)		
	16-29	17	0.5	
	30-39	36	1.0	
	40-49	65	1.8	
	50-59	133	3.8	
	60-69	313	8.9	
********	70-79	925	26.2	*****
******	80-89	1674	47.4	
	90+	371	10.5	
	INR (mean(SD))	2.67 (1.34)		
	INR <2	741	21.0	
	INR 2-4	1941	54.9	
	INR>4	252	7.1	
•)	GCS 13-15	3169	89.7	12
	GCS 8-12	33	1.0	
	GCS <8		0.76	
	Cause of injury: Fall	3238	91.6	

Outcomes

Related Research.	n (3534)	%
Admission	2216	62.7
CT grading (n=2114)	1979	56.0
Significant intracranial abnormality likely to be due to injury	192	9.1
Other abnormality likely to be due to injury (e.g. scalp haematoma, uncomplicated fracture)	417	19.7
Other abnormality unlikely to be due to injury	909	43.0
Normal CT head scan	461	21.8
Reversal therapy	189	5.3
Prothrombin complex concentrate	29	15.3
Intravenous Vitamin K	97	51.3
Oral Vitamin K	16	8.5
Other	46	24.3
Neurosurgical procedures	18	0.5
Further hospital attendances	557	14.2
Head-injury related to original attendance	37	1.0
Other	520	13.2
Died	249	7.0
Head-injury related	41	1.2
Other	158	4.5
OVERALL COMPLICATION RATE	208	5.9 ne
	Research	in Sheffield

Basic data

- Adverse outcomes = **208 (5.9%)**
 - 41 (1.1%) deaths, 16 (0.5%) neurosurgery, 145 (4.1%) CT scans grade 1
 - Further Hospital Attendances (n=37, HI-related): 4 CT scans grade 1, 0 deaths, 2 neurosurgery (overall 0.16% delayed complication)
- Aim to identify variables (measured at presentation) which may predict the adverse outcome.
- Variables considered: age, gender, INR, GCS, symptoms: vomiting, amnesia, headache, loss of consciousness

Univariate analyses

Univariate analysis	OR	Lower limit 95% Cl	Upper limit 95%Cl	No. of records
Age(70 -79)	1.534	0.939	2.506	3534
Age(80+)	1.558	0.995	2.440	
Age (70+)	1.550	1.001	2.402	3534
Gender (female)	0.793	0.600	1.049	3534
GCS(3-12)	15.907	9.254	27.342	3229
INR (2-3.9)	1.010	0.712	1.431	2934
INR(4+)	1.724	1.055	2.816	
INR(4+)	1.712	1.124	2.607	2934
Vomiting	4.276	2.693	6.792	2634
Loss of	4.444	3.156	6.258	2914
consciousness				
Headache	2.046	1.354	3.092	2023
Amnesia	4.698	3.150	7.008	2070

Logistic regression with adverse outcome as 'outcome' and hospital site treated as a random effect

Distribution of INR by adverse outcome

GCS below 13

- 60 patients have a GCS below 13 and 29 of these have an adverse outcome.
- The absolute risk for this group is 48% (95% CI 35.69% to 60.97%).
- Compared to those with GCS 13 and above, the relative risk is 8.7 (95%CI 6.46-11.73).
- As the risk in this small group is very high we removed these from the analysis to try to predict risk for those with GCS of 13 and above.

Univariate analysis (GCS≥13)

Univariate analysis	OR	Lower limit 95% Cl	Upper limit 95%Cl	No. of records
Age(70-79)	1.496	0.877	2.551	3169
Age(80+)	1.459	0.894	2.382	
Age (70 plus)	1.471	0.912	2.371	3169
Gender (female)	0.871	0.642	1.182	3169
INR (2-4)	1.044	0.718	1.519	2667
INR(>4)	1.150	0.629	2.103	
INR(>4)	1.115	0.651	1.908	2667
Vomiting	3.836	2.314	6.359	2434
Loss of consciousness	3.348	2.279	4.920	2654
Headache	1.990	1.299	3.049	1874
Amnesia	4.487	2.967	6.785	1928

So when limiting the analysis to those with ≥GCS 13 only the four symptoms above are significant.

Relative Risk of Adverse

Outcome

Risk level	Patients, n	Adverse events, n (%)	RR	95%CI	p-value
GCS=15 and no neurological symptoms	1838 (52.0%)	52 (2.8%)			
GCS=15 and at least one neurological symptom	828 (23.4%)	70 (8.5%)	2.76	1.88 – 4.06	<0.001
GCS below 15	358 (10.1%)	75(20.9%)	7.38	5.28 - 10.31	<0.001
Excludes records with missing data					

17

NICE 2007

- **756** patients eligible for a CT scan, 70% identified due to risk factors other than warfarin
- In real practice, of these 756 patients:
 - 82.4% [623] patients had a CT scan performed
 - 14.2 % [107] significant intracranial abnormality identified
 - Average time to scan 4 hrs 42 mins, 75% scanned within 4hrs
- **133** patients eligible for a CT scan (according to NICE) but no CT scan performed

NICE 2007: eligible patients

Dationt outcomes	CT scan (n=623)		No CT scan (n=133)	
Patient outcomes	n	%	n	%
Admitted	501	80.4	95	71.4
Length of stay, mean	9.2 days		4.5 days	
Reversal therapy	106	17.0	2	1.5
Neurosurgery	12	1.9	0	-
HI-related deaths	25	4.0	1*	0.8
Re-attended ED due to HI	9	1.4	1	0.8

* RTA, patient died in ED before CT could be done

NICE 2007: site variability

Emergency Medicine Research in Sheffield

CT scanning 'Real World'

- According to NICE 2007 criteria, 20.4% [756] AHEAD patients should have had a CT scan
- In practice, 60% [2,114] patients actually had a CT scan
 - Significant intracranial abnormality identified in **9.2%** [195]
 - Average time to scan 6.3 hours
- Outcomes for all anticoagulated patient cohort
 - HI-related deaths 1.2% [42], no CT scan for 4 patients
 - Re-attended ED due to HI 1.0% [37], no CT scan for 20 patients initially. 4 CT scans grade 1, 0 deaths, 2 neurosurgery (overall 0.16% delayed complication)
- Lots of variability across sites in use of CT scans

CT scanning: site variability

Emergency Medicine Research in Sheffield

NICE 2014

- All patients taking warfarin that experience a head injury should receive a CT scan
- Based on this cohort, additional 40% [1,420] patients
- Additional costs, time, resources
- Burden may not be felt the same across all hospital sites, impact some sites significantly more than others

Cost-effectiveness

• Various scenarios modelled to explore costeffectiveness including:-

CT scan no patients

CT scan patients with significant risk factors (vomiting; LoC)

CT scan all patients (NICE 14)

CT scan 'Real World'

- Impact/ yearly costs and utility costs assigned to GOS level
- Considerable uncertainty i.e. observed data only, estimation of GOS score, assessment of the counterfactual

- Largest cohort of anticoagulated head injury patients reported
- Complication rate low @5.9% in all, 4.3% in GCS=15
- Delayed bleeds very low @0.16%
- Risk of complication significantly increased in <u>alert patients</u> who present with **amnesia**, **vomiting**, loss of consciousness, headache

- Majority of patients that fulfilled the NICE 2007 criteria did have a CT scan (82%), but significant inter-site variation
- A significant number of patients that did not fulfill the NICE 2007 criteria also had a CT scan
- Require a significant increase in CT scans performed to adhere to NICE 2014
- Modelling suggests 'Real World' CT scanning practice most cost-effective strategy...... go with your gut!!
- Further studies include validation of these findings

With thanks to all our study sites for their participation

Barts Health NHS Trust	Nottingham University Hospitals NHS Trust
Blackpool Teaching Hospitals NHS Foundation Trust	Plymouth Hospitals NHS Trust
Cambridge University Hospitals NHS Foundation Trust	Poole Hospital NHS Foundation Trust
County Durham and Darlington NHS Foundation Trust	Portsmouth Hospitals NHS Trust
Gateshead Health NHS Trust	Royal Berkshire NHS Foundation Trust
Heatherwood and Wexham Park Hospitals NHS Foundation Trust	Royal United Hospital Bath NHS Trust
Hull and East Yorkshire Hospitals NHS Trust	Sheffield Teaching Hospitals NHS Foundation Trust
King's College Hospital NHS Foundation Trust	South Tees Hospitals NHS Foundation Trust
Mid Essex Health Services NHS Trust	The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust
Milton Keynes Hospital NHS Foundation Trust	University Hospitals Bristol NHS Foundation Trust
Newcastle Upon Tyne Hospitals NHS Foundation Trust	University Hospitals of Leicester NHS Trust
NHS Lothian	University Hospitals Of Morecambe Bay NHS Foundation Trust
North Bristol NHS Trust	Western Sussex Hospitals NHS Trust
North Tees And Hartlepool NHS Foundation Trust	York Teaching Hospital NHS Foundation Trust
Northampton General Hospital NHS Trust	

This presentation presents independent research funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG-0808-17148). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Email: s.mason@sheffield.ac.uk; m.kuczawski@sheffield.ac.uk;

Emergency Medicine Research in Sheffield