Single neuron models 5

Biophysical models: The Hodgkin-Huxley model (2)

Kevin Gurney

Adaptive Behaviour Research Group

2006

Outline

- Part I: Theory of gate dynamics: voltage clamp formulation
- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Outline of Part I

- Review of gate dynamics
- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

Outline

- Part I: Theory of gate dynamics: voltage clamp formulation
- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Outline of Part II

- 6 Voltage clamp
- Determining K⁺-current gate parameters under voltage clamp

Outline

- Part I: Theory of gate dynamics: voltage clamp formulation
- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Outline of Part III

- 8 The 'zoo' of active ionic-current
- Neural excitability and neural computation
- 10 Augmenting the formalism

Review of gate dynamics K^+ gate dynamics under voltage clamp Functional forms for the gating variables The K^+ current - a summary The Na $^+$ current

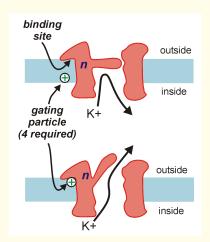
Part I

Theory of gate dynamics: voltage clamp formulation

Outline

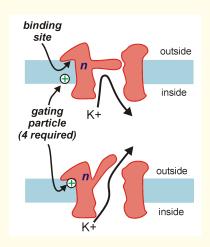
- Review of gate dynamics
- K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

Gates and gating particles The K⁺ current as an example



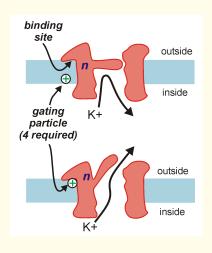
 Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane

Gates and gating particles The K⁺ current as an example



- Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane
- A simplification but if we read 'conformational change' for 'movement of gating particle' we have a modern interpretation

Gates and gating particles The K⁺ current as an example



- Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane
- A simplification but if we read 'conformational change' for 'movement of gating particle' we have a modern interpretation
- The state of the gate is controlled by these particles becoming bound to sites on the external side of the channel pore

First order kinetics K⁺-current

 Recall that the gate for the K⁺-current could be described by a First order kinetics

First order kinetics: K⁺-current

$$\frac{dn}{dt} = \alpha_n(V_m)(1-n) - \beta_n(V_m)n \tag{1}$$

Outline

- Review of gate dynamics
- K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

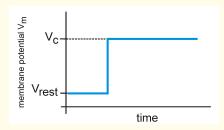
Review of gate dynamics K^+ gate dynamics under voltage clamp Functional forms for the gating variables The K^+ current - a summary The Na^+ current

A strategy for finding gate parameters

 We can't find the rate constants directly. But we can find quantities related to them that are accessible to measurement

A strategy for finding gate parameters

- We can't find the rate constants directly. But we can find quantities related to them that are accessible to measurement
- The key to this programme lies in the ability to Clamp the membrane at some voltage V_c accurately and indefinitely



Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

$$n(V_m, t) \rightarrow n_{\infty}(V_c)$$

Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

$$n(V_m, t) \rightarrow n_{\infty}(V_c)$$

• At equilibrium, dn/dt = 0 so from (1)

$$\alpha_n(V_c)(1-n_\infty(V_c)) = \beta_n(V_c)n_\infty(V_c)$$

Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

$$n(V_m, t) \rightarrow n_{\infty}(V_c)$$

• At equilibrium, dn/dt = 0 so from (1)

$$\alpha_n(V_c)(1-n_\infty(V_c))=\beta_n(V_c)n_\infty(V_c)$$

• solving for $n_{\infty}(V_c)$

$$n_{\infty}(V_c) = \frac{\alpha_n(V_c)}{\alpha_n(V_c) + \beta_n(V_c)}$$
 (2)

A new gating variable: $n_{\infty}(V_c)$

• Equation (2) defines the variable $n_{\infty}(V_m)$ for any V_m

$$n_{\infty}(V_m) = \frac{\alpha_n(V_m)}{\alpha_n(V_m) + \beta_n(V_m)}$$
(3)

with the interpretation that, if V_m was held constant long enough, the gating variable $n(V_m,t)$ would approach $n_\infty(V_m)$

Another new gating variable $\tau_n(V_m)$

Put

$$\tau_n(V_m) = \frac{1}{\alpha_n(V_m) + \beta_n(V_m)} \tag{4}$$

The choice of notation gives the game away... τ_n will turn out to play the role of a time constant

Another new gating variable $\tau_n(V_m)$

Put

$$\tau_n(V_m) = \frac{1}{\alpha_n(V_m) + \beta_n(V_m)} \tag{4}$$

The choice of notation gives the game away... τ_n will turn out to play the role of a time constant

Then (3) and (4) may be solved for α_n, β_n

$$\alpha_n = \frac{n_{\infty}}{\tau_n}$$

$$\beta_n = \frac{1 - n_{\infty}}{\tau_n}$$
(5)

Reformulation of gate dynamics

• Substituting (5) in the rate kinetics equation (1)

Activation gate dynamics using τ_n, n_{∞}

$$\frac{dn}{dt} = \frac{n_{\infty}(V_m) - n}{\tau_n(V_m)} \tag{6}$$

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

• where, because V_c is constant, $\tau_n(V_c)$ and $n_\infty(V_c)$ are constant

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

- where, because V_c is constant, $\tau_n(V_c)$ and $n_\infty(V_c)$ are constant
- Suppose that

$$V_m(t) = \left\{ egin{array}{ll} V_{rest} & ext{if } t < t_0 \ V_c & ext{if } t \geq t_0 \end{array}
ight.$$

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

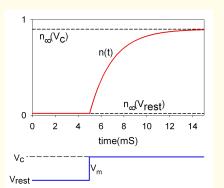
- where, because V_c is constant, $au_n(V_c)$ and $n_\infty(V_c)$ are constant
- Suppose that

$$V_m(t) = \left\{ egin{array}{ll} V_{rest} & ext{if } t < t_0 \ V_c & ext{if } t \geq t_0 \end{array}
ight.$$

• Equation(7) can then be solved analytically for $t \geq t_0$

$$n(t) = n_{\infty}(V_c) - [n_{\infty}(V_c) - n_{\infty}(V_{rest})] \exp[-(t - t_0)/\tau_n(V_c)]$$
 (8)

$$n(t) = \left\{egin{array}{ll} n_{\infty}(V_c) - [n_{\infty}(V_c) - n_{\infty}(V_{rest})] e^{-(t-t_0)/ au_n(V_c)} & ext{if } t \geq t_0 \ n_{\infty}(V_{rest}) & ext{if } t < t_0 \end{array}
ight.$$



• Notice that τ_n occurs in the role of a time constant governing the speed of the exponential rise time of n(t).

Outline

- Review of gate dynamics
- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

• Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable

- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_K(t) = g_{max}^K n^q(t) (E_K - V_m)$$

 $I_K(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_\infty(V_m)$ and $\tau_n(V_m)$

- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_K(t) = g_{max}^K n^q(t) (E_K - V_m)$$

- $I_K(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_\infty(V_m)$ and $\tau_n(V_m)$
- More details are given in the next Part of the lecture

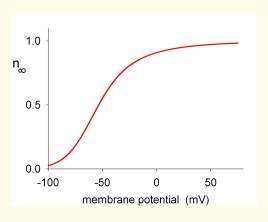
- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_K(t) = g_{max}^K n^q(t) (E_K - V_m)$$

 $I_K(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_\infty(V_m)$ and $\tau_n(V_m)$

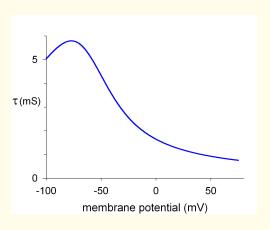
- More details are given in the next Part of the lecture
- But now, we look at the typical forms for $n_{\infty}(V_m)$ and $\tau_n(V_m)$ and how to interpret them

Finding forms for gating variables A curve fitting exercise - $n_{\infty}(V_c)$



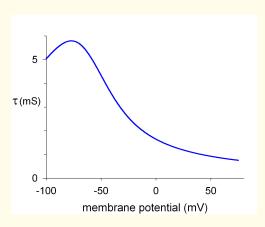
• Typically $n_{\infty}(V_m)$ is a monotonic increasing function of V_m that is roughly S-shaped...

Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$



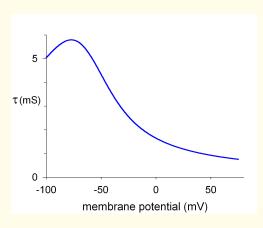
• ...while $\tau_n(V_m)$ is often bell-shaped

Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$



- ...while $\tau_n(V_m)$ is often bell-shaped
- However, the functional forms for $n_{\infty}(V_c)$, $\tau_n(V_c)$ are purely phenomenological. The curves shown are simply best fits to data using combinations of exponentials etc.

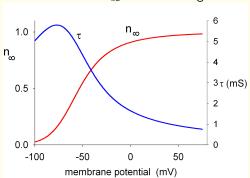
Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$



- ...while $\tau_n(V_m)$ is often bell-shaped
- However, the functional forms for $n_{\infty}(V_c)$, $\tau_n(V_c)$ are purely phenomenological. The curves shown are simply best fits to data using combinations of exponentials etc.
- Also, the 'number of particles' q required to best fit the data is 4

Finding forms for gating variables Rate constants are theoretically plausible

Sometimes au and n_{∞} are shown together



• However, by solving for α_n , β_n from n_∞ , τ_n , the basic 'shape' of the functions $\alpha_n(V)$, $\beta_n(V)$ are consistent with theoretical treatments of kinetics (Johnston & Wu page 130 and 153)

Outline

- Review of gate dynamics
- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

$$I_K = g_K(E_K - V_m) \tag{9}$$

K⁺ current (with kinetic rate constants)

$$I_K = g_K(E_K - V_m) \tag{9}$$

$$g_K = g_{max}^K n^4 \tag{10}$$

K⁺ current (with kinetic rate constants)

$$I_K = g_K (E_K - V_m) \tag{9}$$

$$g_K = g_{max}^K n^4 \tag{10}$$

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n \tag{11}$$

where α_n, β_n are functions of V_m ; $\alpha(V_m), \beta(V_m)$

K⁺ current (voltage clamp based formulation)

$$I_K = g_K (E_K - V_m)$$
$$g_K = g_{max}^K n^4$$

K⁺ current (voltage clamp based formulation)

$$I_{K} = g_{K}(E_{K} - V_{m})$$

$$g_{K} = g_{max}^{K} n^{4}$$

$$\frac{dn}{dt} = \frac{n_{\infty} - n}{\tau_{n}}$$
(12)

where n_{∞} , τ_n are functions of V_m ; $n_{\infty}(V_m)$, $\tau_n(V_m)$

Relationship between two formulations

$$n_{\infty} = \frac{\alpha_n}{\alpha_n + \beta_n} \tag{13}$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n} \tag{14}$$

Relationship between two formulations

$$n_{\infty} = \frac{\alpha_n}{\alpha_n + \beta_n} \tag{13}$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n} \tag{14}$$

or solving for α_n, β_n

$$\alpha_n = \frac{n_\infty}{\tau_n} \tag{15}$$

$$\beta_n = \frac{1 - n_{\infty}}{\tau_n} \tag{16}$$

Outline

- Review of gate dynamics
- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

Review of gate dynamics K^+ gate dynamics under voltage clamp Functional forms for the gating variables The K^+ current - a summary The Na $^+$ current

Gating particle dynamics The Na⁺ current: review

 Na⁺ current is an inactivating current: it activates on depolarisation but also inactivates (is 'shut down') after a delay

Gating particle dynamics The Na⁺ current: review

- Na⁺ current is an inactivating current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate m, and inactivation gate h

- Na⁺ current is an inactivating current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate m, and inactivation gate h
- Both gates have to be open

- Na⁺ current is an inactivating current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate m, and inactivation gate h
- Both gates have to be open
- $P(\text{m-open}) = m^3$ (it turns out you need 3 'm-particles' bound simultaneously)

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate m, and inactivation gate h
- Both gates have to be open
- $P(\text{m-open}) = m^3$ (it turns out you need 3 'm-particles' bound simultaneously)
- P(h-open) = h (single inactivation gating 'particle')

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate m, and inactivation gate h
- Both gates have to be open
- $P(\text{m-open}) = m^3$ (it turns out you need 3 'm-particles' bound simultaneously)
- P(h-open) = h (single inactivation gating 'particle')
- $P(\text{gate-open}) = P(\text{m-open})P(\text{h-open}) = m^3h$

Review of gate dynamics K^+ gate dynamics under voltage clamp Functional forms for the gating variables

The K^+ current - a summary

The Na⁺ current

Gating particle dynamics The Na⁺ current

• Let g_{Na} be the conductance of the Na⁺ current

Gating particle dynamics The Na⁺ current

- Let g_{Na} be the conductance of the Na⁺ current
- Let g_{max}^{Na} be the conductance if all channels were open

$$g_{Na} = g_{max}^{Na} P(\text{gate-open}) = g_{max}^{Na} m^3 h$$

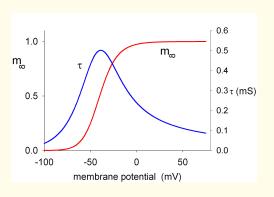
Gating particle dynamics The Na⁺ current

- Let g_{Na} be the conductance of the Na⁺ current
- Let g_{max}^{Na} be the conductance if all channels were open

$$g_{Na} = g_{max}^{Na} P(\text{gate-open}) = g_{max}^{Na} m^3 h$$

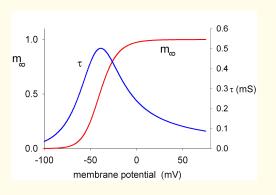
• Both m and h gates may be treated in the same way as the n gate for K^+

The Na⁺ current activation gate



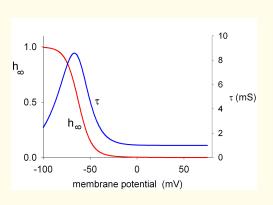
• The steady state activation $m_{\infty}(V_m)$ and its time constant $\tau_m(V_m)$

The Na⁺ current activation gate



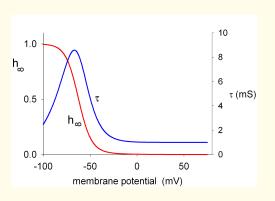
- The steady state activation $m_{\infty}(V_m)$ and its time constant $\tau_m(V_m)$
- Note $\tau_m \ll \tau_n$ so that Na⁺ activates much more quickly than K⁺ (as required)

The Na⁺ current inactivation gate



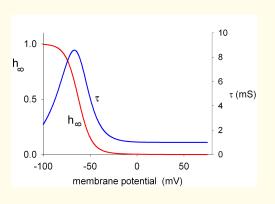
• The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$

The Na⁺ current inactivation gate



- The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$
- Note that h_{∞} declines with depolarisation which is how we would expect an inactivation gate to work (review qualitative description at start of lecture)

The Na⁺ current inactivation gate



- The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$
- Note that h_{∞} declines with depolarisation which is how we would expect an inactivation gate to work (review qualitative description at start of lecture)
- $\tau_h \gg \tau_m$ so that inactivation takes place *after* activation

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

Na⁺ current (with kinetic rate constants)

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{18}$$

Na⁺ current (with kinetic rate constants)

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{18}$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m \qquad \frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \qquad (19)$$

where $\alpha_m, \beta_m, \alpha_h, \beta_h$ are functions of V_m

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

Na⁺ current (voltage clamp based formulation)

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{21}$$

Na⁺ current (voltage clamp based formulation)

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{21}$$

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_m} \qquad \frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_h}$$
 (22)

where $m_{\infty}, h_{\infty}, \tau_m, \tau_h$ are functions of V_m

Relationship between two formulations

$$m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m} \qquad h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}$$
 (23)

$$\tau_{m} = \frac{1}{\alpha_{m} + \beta_{m}} \qquad \tau_{h} = \frac{1}{\alpha_{h} + \beta_{h}}$$
 (24)

Relationship between two formulations

$$m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m} \qquad h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}$$
 (23)

$$\tau_{m} = \frac{1}{\alpha_{m} + \beta_{m}} \qquad \tau_{h} = \frac{1}{\alpha_{h} + \beta_{h}}$$
 (24)

or solving for α, β

$$\alpha_m = \frac{m_\infty}{\tau_m} \qquad \alpha_h = \frac{h_\infty}{\tau_h} \tag{25}$$

$$\beta_m = \frac{1 - m_\infty}{\tau_m} \qquad \beta_h = \frac{1 - h_\infty}{\tau_h} \tag{26}$$

Outline

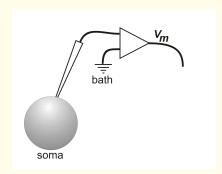
- 6 Voltage clamp
- Determining K⁺-current gate parameters under voltage clamp
 - Finding G_{max}
 - Finding p
 - Finding remaining parameters

Experimental methods - why do we need to know them?

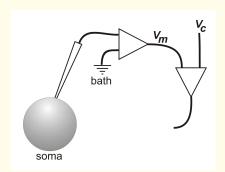
 While computational neuroscience is clearly a theoretical area, it is intimately bound up with experimental practice because we need data for constraints

Experimental methods - why do we need to know them?

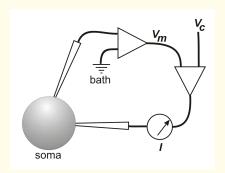
- While computational neuroscience is clearly a theoretical area, it is intimately bound up with experimental practice because we need data for constraints
- Understanding experimental methods allows us to know the origins of data and how to interpret them



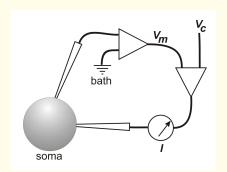
 Measure the membrane potential V_m in normal way (compare internal potential with the extracellular potential)



• Compare V_m with the clamp voltage V_c ...



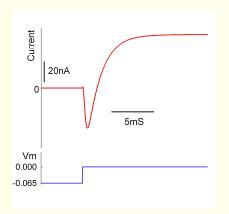
 ... and use the difference to drive a current source I



- ... and use the difference to drive a current source I
- In this way the current supplied, I_{clamp} , is exactly equal and opposite to that due to the ion flux across the membrane, I_{ion}

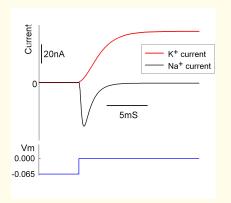
$$I_{clamp} = -I_{ion}$$

Voltage Clamp An example in simulation



- Model with AP generating K⁺ and Na⁺ currents currents used as 'virtual data'
- $V_c = 0$, and total clamp current I_{clamp} is shown
- It is conventional in physiology papers to show this rather than I_{ion}

Voltage Clamp Dissecting currents



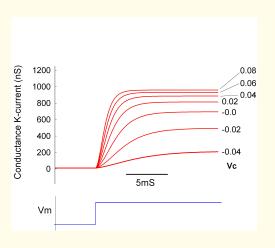
- By poisoning current-specific channels, we can dissect out individual currents
- Note clamp currents are again shown (e.g. I_K is negative, but the I_{clamp} required is positive)

Outline

- 6 Voltage clamp
- Determining K⁺-current gate parameters under voltage clamp
 - Finding G_{max}
 - Finding p
 - Finding remaining parameters

Outline

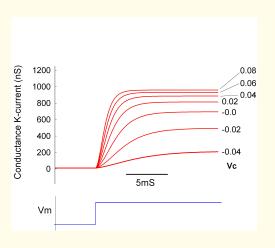
- Determining K⁺-current gate parameters under voltage clamp
 - Finding G_{max}
 - Finding p
 - Finding remaining parameters



 Can measure conductance g_K using

$$g_K = I_K/(V_m - E_K)$$

since $V_m = V_c$, and we know I_K and E_K

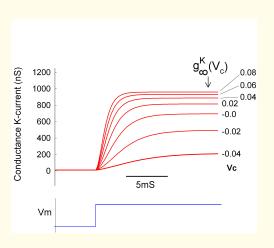


 Can measure conductance g_K using

$$g_K = I_K/(V_m - E_K)$$

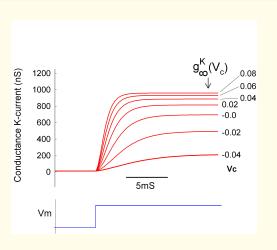
since $V_m = V_c$, and we know I_K and E_K

• Also, $g_K = g_{max}^K n^q$, with 0 < n < 1



• Conductance at equilibrium $g_{\infty}^{K}(V_{c})$ is

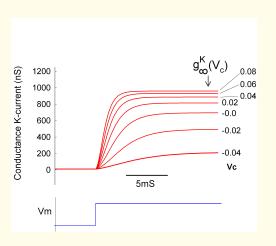
$$g_{\infty}^K(V_c) = g_{max}^K n_{\infty}^p(V_c)$$



• Conductance at equilibrium $g_{\infty}^{K}(V_{c})$ is

$$g_{\infty}^K(V_c) = g_{max}^K n_{\infty}^p(V_c)$$

• As V_c increases, it appears that $g_{\infty}^K(V_c)$ increases and is reaching its limiting value g_{max}^K with $n_{\infty}^p(V_c)=1$



• Conductance at equilibrium $g_{\infty}^K(V_c)$ is

$$g_{\infty}^{K}(V_{c}) = g_{max}^{K} n_{\infty}^{p}(V_{c})$$

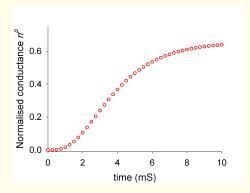
- As V_c increases, it appears that $g_{\infty}^K(V_c)$ increases and is reaching its limiting value g_{max}^K with $n_{\infty}^p(V_c) = 1$
- ullet So, with sufficiently large V_c

$$g_{\infty}^{K}(V_{c}) \approx g_{max}^{K}$$

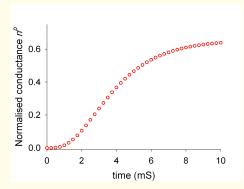
Outline

- 6 Voltage clamp
- Determining K⁺-current gate parameters under voltage clamp
 - Finding G_{max}
 - Finding p
 - Finding remaining parameters

Finding p



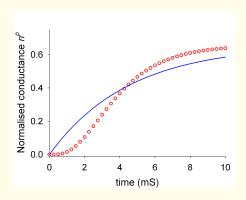
• The following phase of analysis occurs for fixed V_c



- The following phase of analysis occurs for fixed V_c
- The (virtual cell) data points are for the normalised conductance n^p(t)

$$n^p(t) = \frac{g^K(t)}{g^K_{max}}$$

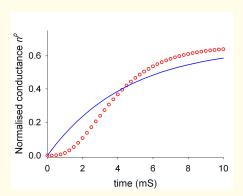
which lies between 0 and 1 (typically, $g_{max}^{K} \ll 1$)



• Let p^* be an estimate of p; calculate the corresponding estimate n^*_{∞} of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{p^*}}$$

$$p^* = 1$$
 and $n^*_{\infty} = n^p_{\infty} = 0.656$

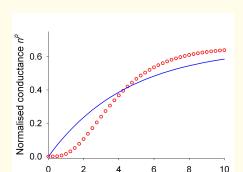


$$p^* = 1$$
 and $n_{\infty}^* = n_{\infty}^p = 0.656$

• Let p^* be an estimate of p; calculate the corresponding estimate n^*_{∞} of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{p^*}}$$

• Using n_{∞}^* in the solution in (8) for n(t), vary τ_n for the best fit to the data (automatically or by hand)



time (mS)

$$p^* = 1$$
 and $n_{\infty}^* = n_{\infty}^p = 0.656$

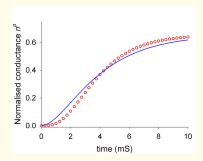
 Let p* be an estimate of p; calculate the corresponding estimate n_{∞}^* of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{p^*}}$$

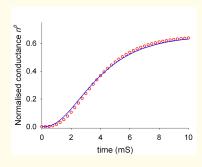
- Using n_{∞}^* in the solution in (8) for n(t), vary τ_n for the best fit to the data (automatically or by hand)
- The blue line is the best fit. for $p^* = 1$

8

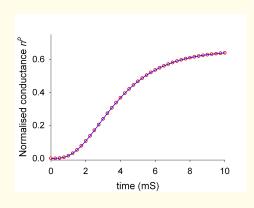
10



$$p^* = 2$$
 and $n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{2}} = 0.81$

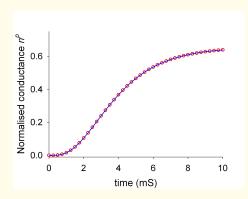


$$p^* = 3$$
 and $n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{3}} = 0.869$



• p = 4 gives a good fit ...

$$p^*=4$$
 and $n^*_{\infty}=n^p_{\infty}=0.9$



•
$$p = 4$$
 gives a good fit ...

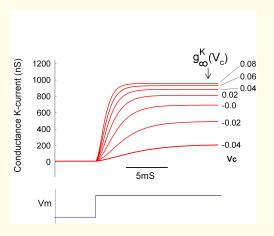
 In fact it's an exact fit because it was used to derive the 'data'!

$$p^* = 4$$
 and $n_{\infty}^* = n_{\infty}^p = 0.9$

Outline

- 6 Voltage clamp
- Determining K⁺-current gate parameters under voltage clamp
 - Finding G_{max}
 - Finding p
 - Finding remaining parameters

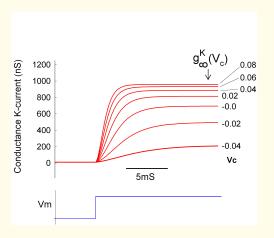
Finding $n_{\infty}(V_c)$



• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_c)$

$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^K(V_c)}{g_{max}^K}\right]^{\frac{1}{p}}$$

Finding $n_{\infty}(V_c)$

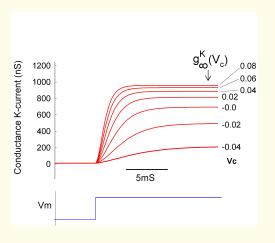


• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_c)$

$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^K(V_c)}{g_{max}^K}\right]^{\frac{1}{p}}$$

• Then find $\tau_n(V_c)$ by fitting n(t) at each V_c (described by (8)) to the corresponding data

Finding $n_{\infty}(V_c)$



• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_c)$

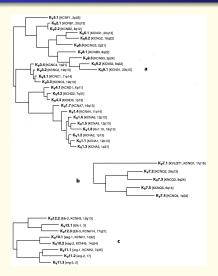
$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^K(V_c)}{g_{max}^K}\right]^{\frac{1}{p}}$$

- Then find $\tau_n(V_c)$ by fitting n(t) at each V_c (described by (8)) to the corresponding data
- Finding parameters for the Na⁺ current requires more complex voltage clamp protocols...

Outline

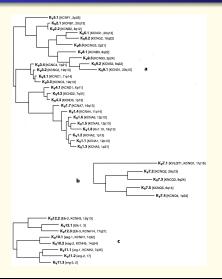
- 8 The 'zoo' of active ionic-current
- 9 Neural excitability and neural computation
- 10 Augmenting the formalism

Modelling the 'zoo' of ion-channels is potentially tractable



 Most K⁺, Na⁺ voltage gated currents can be described using the formalism developed here

Modelling the 'zoo' of ion-channels is potentially tractable



- Most K⁺, Na⁺ voltage gated currents can be described using the formalism developed here
- The diversity of K⁺ channels is illustrated in the figure (determined using genetic and proteomic techniques). These are, all in principle, amenable to the HH formalism. (Same applies to Na⁺ channels)

Outline

- The 'zoo' of active ionic-current
- Meural excitability and neural computation
- 10 Augmenting the formalism

The 'zoo' of active ionic-current Neural excitability and neural computation Augmenting the formalism Summary

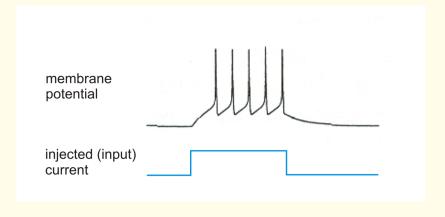
Active currents allow a wide diversity of behaviour Mechanism for neural computation

 The diversity of active currents supports a corresponding diversity of neural behaviours

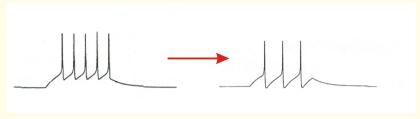
Active currents allow a wide diversity of behaviour Mechanism for neural computation

- The diversity of active currents supports a corresponding diversity of neural behaviours
- These behaviours supply the building blocks or mechanisms on which neural computation is founded

Basic action potential generation with Na⁺, K⁺

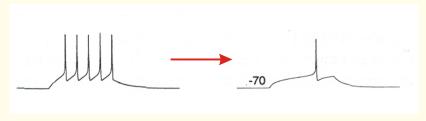


Enhanced repolarisation - reduction of firing rate



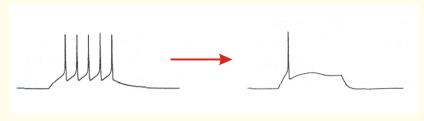
 Ca^{2+} -activated K⁺ current, and high threshold Ca^{2+} current I_L

Delay to onset of firing - temporal filter



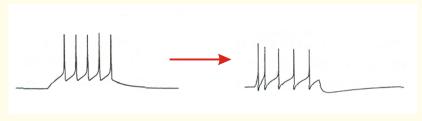
Transient K^+ current I_A

Decreased response



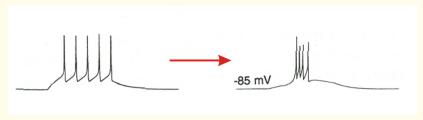
persistent K^+ current I_M

Neural excitability Firing rate accommodation or adaptation



Slow Ca^{2+} -activated K^+ current, I_{AHP}

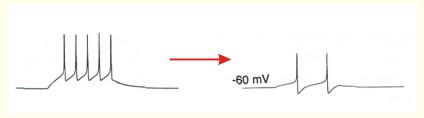
Neural excitability Rebound bursting 1



Bursting when excited from hyperpolarisation but...

Transient Ca^{2+} current I_T

Neural excitability Rebound bursting 2



No bursting when excited from resting potential Transient Ca^{2+} current I_T

Outline

- The 'zoo' of active ionic-current
- 9 Neural excitability and neural computation
- 10 Augmenting the formalism

HH formalism augmented Ca²⁺-currents

Basic form of HH-current

$$I(V_m, t) = g_{max} m(V_m, t)^P n(V_m, t)^Q (E_{rev} - V_m)$$

showing dependence of variables on V_m and t

HH formalism augmented Ca²⁺-currents

Basic form of HH-current

$$I(V_m,t) = g_{max} m(V_m,t)^P n(V_m,t)^Q (E_{rev} - V_m)$$

showing dependence of variables on V_m and t

• Ca^{2+} -currents require an extension of the formalism where the driving force $(E_{rev}-V_m)$ is replaced by a more complex voltage dependent term, and there may be additional gating variables dependent on $[Ca^{2+}]_{in}$, as well as those dependent on V_m and t

The 'zoo' of active ionic-current Neural excitability and neural computation **Augmenting the formalism** Summary

HH formalism augmented Synaptic input and morphology

 Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m
- Dividing the membrane into smaller iso-potential *compartments* overcomes this problem

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m
- Dividing the membrane into smaller iso-potential *compartments* overcomes this problem
- Both issues dealt with next time...

• There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique
- Carefully constructed experiments are required to determine n_{∞}, τ_n

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique
- Carefully constructed experiments are required to determine n_{∞}, au_n
- The HH formalism is extremely powerful, and can be extended to accommodate most channels, synaptic input and morphology

The 'zoo' of active ionic-current Neural excitability and neural computation Augmenting the formalism Summary

References and further reading

Reread references given in the last lecture (which will have incorporated the voltage clamp formalism into their descriptions)