Innovization: Discovery of Innovative Solution Principles Using Multi-Objective Optimization

Kalyanmoy Deb

Gurmukh and Veena Mehta Chair Professor

Indian Institute of Technology Kanpur Email: deb@iitk.ac.in

http://www.iitk.ac.in/kangal/deb.htm

Adjunct Professor, Aalto University, Helsinki, Finland Visiting Professor, University of Skövde, Sweden Currently at Michigan State University, East Lansing, USA

Overview

- Innovization: Innovation through optimization
- Knowledge discovery through optimization:
 - "Beyond optimization"
- Evolutionary multi-objective optimization (EMO)
- Case studies
- Recent extensions
 - Higher and lower-level innovizations
 - Automated innovization
 - Innovization for faster EMO convergence
 - ► Temporal *innovization*
 - Conclusions

How Much Can Be Learned From A Single-Objective Optimization?

- Often, one optimum x*
- x* minimizes f(x)
 subject to satisfaction
 of some constraints
- Sensitivity analysis provides neighborhood information
- Not much can be gathered from one solution

The Very Idea of Innovization

Innovation through Optimization

Common features hidden in multiple "highperforming" solutions www.askmen.com/women/top50/index.html

Two Questions:

What is common in these pretty faces?

- How to find/locate multiple high-performing solutions?
- How to reveal common features?

Answer to the First Question: Multi-Objective Optimization to Find Multiple Trade-off Optimal Solutions

Sheffield, UK (22 March 2013)

Why Evolutionary?

Evolutionary Multi-Objective Optimization (EMO)

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

EMO Constitutes a Parallel Search

- Population approach suits well to find multiple solutions
- Implicit parallelism helps provide a parallel search
- Multiple applications of classical methods do not constitute a parallel search

EMO-2013 Keynote Le Sheffield, UK (22 March

Answer to the Second Question: Innovization Task Through an Example

Unveil important design principles in a routine design scenario

- Example: Electric motor design with varying ratings, say 1 to 10 kW
 - Each will vary in size and power
 - Armature size, number of turns etc.
- How do solutions vary?
 - Any common principles!

Pareto-optimal Solutions Must Satisfy Optimality Conditions

Fritz-John Necessary Condition:

Solution x^* satisfy

1.
$$\sum_{m=1}^{M} \lambda_m \nabla f_m(x^*) - \sum_{j=1}^{J} u_j \nabla g_j(x^*) = 0$$
, and
2. $u_j g_j(x^*) = 0$ for all $i = 1, 2, 3, \dots, J$

3. $u_j \ge 0$, $\lambda_j \ge 0$, for all j and $\lambda_j \ge 0$ for at least one j

- To use above conditions requires differentiable objectives and constraints
- Yet, it lurks existence of some properties among Pareto-optimal solutions

Similar Other Studies

- □ Rules (Papalambros, 1984)
- Graphs or influence diagrams (Michelena and Agogino, 1993)
- □ SVD based approach (Sarkar et al., 2008)
- Clustering in design space (Obayashi and Sasaki, 2003); MODE (MO design exploration) (Obayashi et al., 2005)
- Heatmap (Pryke et al., 2007
- Dendogram grouping (Ulrich et al., 2008))
- □ None can provide explicit math. relationship

Case Studies of Innovization: Brushless DC Permanent Magnet Motor Design for Cost and Peak Torque

 Five variables (all discrete), three constraints

- Non-convex, disconnected
 P-O fronts
- Innovization:
 - Connection: Y (betn. Y & Δ)
 - Lamination Type: Y (X, Y, Z)
 - 1 out of 16 wire guages
 - 18 turns per coil (10,80)
 - More peak torque by adding linearly more laminations

Design Innovation

Truss Structure Design

Variables: Member size and connectivity
 Objectives: Weight and deflection

Kan GAL

A Cantilever Plate Design

EMO-2013 Keynote Lecture, Sheffield, UK (22 March 2013)

EMO-2013 Keynote Lecture, Sheffield, UK (22 March 2013)

Gear-box Design

- A multi-spindle gear-box design
- 29 variables (integer, discrete, real-valued)

Kan GAL

- 101 non-linear constraints
- Important insights obtained (larger module for more power)

Design Principles

- Module (discrete) varies proportional to square-root of power
- Keep other 28 variables more or less the same

Epoxy Polymerization

- Three ingredients added hourly
- 54 ODEs solved for (kg/kg[mole) a 7-hour simulation
- Maximize chain length (Mn)
- Minimize polydispersity index (PDI)
- Total 3x7 or 21 variables

A non-convex frontier

Epoxy Polymerization (cont.)

Innovative Operating Principles Revealed:

- Some patterns emerge among obtained solutions
- Chemical significance unveiled

Kan GAI

BEACON

Innovative Principles in Use: An Operating Chart

Overhead Crane Maneuvering

- Minimize Operation Time
- Minimize Operating Energy

Innovation in Crane Operation

Tic-Tac-Toe Playing Strategy

- Widely varying solutions are analyzed and following properties are discovered:
 - If opponent is one short of winning, block it
 - If center is empty, occupy it
 - If center is filled, occupy corner and edge-center, in this order

All 72,657 solutions are split in #draws and #wins

Agree with what a human will come up with experience
Done this on an Iterated

Kan GAL

EMO-2013 Keynote Lectu Prisioner's Dilemma problem

Player Selection in the Game of Twenty20 Cricket

Compute frequency of players and choose from them
29 of 129 players

EMO-2013 Keynote Lecture, Sheffield, UK (22 March 2013)

Kan GAL

Recent Extensions of *Innovization* Concept

- □ More generic *innovization*
- Higher-level innovization
- Lower-level innovization
- Automated innovization
- □ Temporal *innovization*
- Innovization to speed-up EMO's convergence

Generic Innovization Using Genetic Programming

Higher-Level Innovization: Common Principles Among Multiple Fronts

- Over different parameter settings
 - Material properties, load, bounds, resources
- Over different variable sizes and types
 - Continuous to discrete
- Over multi-modal solutions
- Over different constraint combinations
- More possibilities

Procedure:

• Multiple fronts put together -> Extension of *innovization* task

Higher-Level *Innovization* Results on Spring Design Problem

- δ_w varied
- Multiple fronts combined
- Innovization performed

Higher-level Innovization:

Stiffness= $700/\delta_w$

Reliability Considerations

- A car side-impact design problem
- How common principles change with reliability value? (Deb et al., 2010)

x1: thk. of B-Pillar innerx7: thk. of roof rail

EMO-2013 Keync Sheffield, UK (22

Lower-Level Innovization: Common Principles Within a Part of PO Front

- Knee region
- Over Preferred PO solutions
 - Reference point based solutions, weight based solutions
- Over specified values of objective or constraints or variable boundaries
- Over some fixed values of variables

Lower-Level Innovization

Two sets:

Spring Design Problem

What is common in one and what does not exist in another?

- Spring design problem with a reference pt.
 - d=0.43755 in

More Lower-Level Innovizations

- Three-objective front
- What principles are common for f1=f1*, but not common with rest of the front?
- Epoxy polymerization process

Automated Innovization

- Find principles from Pareto-optimal data
 - Objectives and decision variables
- A complex data-mining task
 - Clustering cum concept learning
 - Rule extraction
- Difficulties
 - Multiple relationships
 - Relationships span over a partial set
 - Mathematical forms not known a-priori
 - Dealing with inexact data

A Truss Design Problem

Kan GAL

Truss Design (Automated Innovization)

Obtained Rules (independent applications):

Sheffield, UK (22 March 2013)

Clutch Design (Automated Innovization)

Obtained Rules (independent applications): $t = 1.5 \text{ mm}, \quad F = 1000 \text{ N}, \quad Z = \{3, 4, 5, 6, 7, 8, 9\},\$ $\frac{1}{r_i^{0.78885}} = 3.1524,$ r_o $TS^{0.98635} = 305885.84,$ 12 Cluster Plot (7 Clusters, 0 Unclustered Points) $Z^{1.00000} = 3$ 9 11 10 Stopping time (s) $Z^{1.00000} = 4$ 7 c Values $Z^{1.00000} = 5$ $Z^{1.00000} = 6$ 5 $7^{1.00000} = 7$ 5 $Z^{1.00000} = 8$ 4 4 3 0.4 0.6 0.8 1 1.2 1.4 2.2 500 800 900 0 200300 1000 100400 600 700 System mass (kg) Data Points EMO-2013 Keynote Lecture, Kan GAL

Multiple Rules Simultaneously (Bandaru and Deb, 2010)

- Use of a *niching* operator to find multiple rules
- Row-echelon operation to get a minimal set

i	$a_{i1}^*b_{i1}^*$		$a_{i2}^{*}b_{i2}^{*}$	$a_{i3}^{st}b_{i3}^{st}$	$a_{i4}^*b_{i4}^*$	$a_{i5}^{st}b_{i5}^{st}$	d_i^*	S_i
DR1	1.00000	000	0.0000000	0.0000000	-1.0006158	0.0000000	520	88.2%
DR2	0.00000	000	1.0000000	0.0000000	1.0005781	0.0000000	508	80.8%
DR3	0.00000	000	0.0000000	1.0000000	-1.0009661	0.0000000	507	86.8%
DR4	0.00000	000	0.0000000	0.0000000	0.0000000	1.0000000	511	87.2%
	10 11	10101 10111	$\begin{array}{c} 0.8388214 \\ 0.8813441 \end{array}$	0.0000000	1667 0.000000 007 -0.301366	00 1.0000000 8 9 1.0000000 8	869 869 Trus	s Desig
DR1: $\frac{V}{x_1} = c_{\text{DR1}}$, DR2: $Sx_2 = c_{\text{DR2}}$, DR3: $\frac{x_1}{x_2} = c_{\text{DR3}}$, DR4: $y = c_{\text{DR4}}$								
	17 18 19	10100	1.0000000 1.0000000 1.0000000	0.0000000 -0.9 0.0000000 -0.7 0.6702390 0.0	971116 0.000000 353538 -0.264770 000000 -0.330035	0 0.0000000	869 869 869	

20

11100

1.0000000

EMO-2013 Keynote Lecture, Sheffield, UK (22 March 2013)

-0.2102126

0.0000000

0.0000000

860

0.7911332

Temporal Evolution

Step 1: Perform multiple runs of an EMO

- store all P_t of non-dominated solutions of gen. t
- remove dominated solutions

Step 2: Perform automated *innovization* for final pop and identify design principles (DP)

- Step 3: Identify DPs that exist with a statistical significance in all earlier generations
- Step 4: Make a time-line genesis of DPs and decipher the hierarchy of evolution of DPs

An Example: A MEMS Design Problem

14 design variables, 24 constraints
 Obj: (i) min power consumption (ii) min area

Automated Innovization

Step 2

15 design principles (DPs) obtained

Notation	Design principle	Cluster average $(\mu_{largest})$	Significance
DP1	$w_c^{1.0000} = c$	2.000231E-06	98.50 %
DP2	$w_{sy}^{1.0000} = c$	1.000441E-05	97.16 %
DP3	$L_{sa}^{1.0000} = c$	1.169490E-05	88.23 %
DP4	$w_t^{1.0000} = c$	2.001497E-06	87.65 %
DP5	$L_t^{1.0000} = c$	6.873649E-06	87.40 %
DP6	$L_{sy}^{1.0000} = c$	3.605399E-05	86.56 %
DP7	$w_{sa}^{1.0000} = c$	1.000482E-05	86.06 %
DP8	$w_b^{1.0000} = c$	2.000028E-06	84.72 %
DP9	$w_{cy}^{1.0000} = c$	1.000088e-05	79.63 %
DP10	$f_1^{1.0000} L_b^{0.6470} = c$	1.078929E-01	78.46 %
DP11	$f_2^{1.0000}L_b^{-0.4888} = c$	3.671301E + 02	74.12~%
DP12	$f_1^{0.2546} f_2^{1.0000} L_b^{-0.3563} = c$	2.812855E + 02	73.79 %
DP13	$f_2^{1.0000} L_b^{-0.4800} L_c^{-0.1160} = c$	1.258088E + 03	72.70 %
DP14	$f_1^{1.0000} \bar{L}_b^{0.6490} L_c^{0.1429} = c$	2.112050E-02	72.70 %
DP15	$f_1^{0.7737} f_2^{1.0000} = c$	7.301285E+01	70.45 %

Chronology of Evolution of DPs

Step 3:

- Set a threshold on confidence level (8% used here)
- Identify chronology of evolution of DPs

Innovization to Speed-up MO Optimization

- Innovized principles as heuristics for local searches for a further EMO run
- A metal-cutting problem

Feed and Depth of Cut

After a few generations of NSGA-II:

Feed and Depth of Cut (cont.)

After Heuristics Based EMO:

Further studies: (Ng et al., 2012, SPS-2012)

Conclusions

- EMO's ability to find multiple trade-off solutions put to a bigger cause
 - Better insight to the problem
 - Learn how to solve the problem
 - Often leads to innovative solution principles
 - Difficult to achieve by other means
- Basic idea extended for different levels of information
- Other possibilities exist (Decision tree approach by Amos Ng and his students at Skovde)
- Applications in design, control and modeling

Acknowledgements

- Robin Purshouse and Peter Fleming
- My collaborators: Aravind Srinivisan, Sunith Bandaru, Cem Tutum, A. Gaspar-Cunha, David Griener, Amos Ng
- Beacon Center for study of evolution at Michigan State University, East Lansing, USA

