Optimization of Adaptation: A Multi-objective Approach for Optimizing Changes to Design Parameters

Shaul Salomon, Gideon Avigad, Peter J. Fleming and Robin C. Pursehouse

This research is supported by the Marie Curie Fellowship program

Optimize fionte & Adaptise & Roby ducts

- Can react to changes in environmental conditions
- Include adjustable variables for late decision

Optimization of Adaptive Products

Optimization of Adaptive Products

Active Robust Optimization Problem

$$\begin{split} \min_{x \in Q} f(x, t) \\ s.t. \ g_i(x, t) \geq 0 \ , \quad (i = 1, ..., I) \\ h_j(x, t) = 0 \ , \quad (j = 1, ..., J) \end{split}$$

How to Adapt?

How to Adapt?

How to Adapt?

Optimal Control

 $\min_{u} \{error, cost\}$

Optimal Adaptation

 $\min_{x} \{f, cost\}$

The Optimal Adaptation Problem

$$\min_{x(t)\in Q} \{ f(x(t)), cost(x(t)) \}, \quad t \in [t_0, t_f]$$

s.t. $x(t_0) = x_0$, $x(t_f) = x_f$
 $u_{i,l} \le u_i \le u_{i,u}, \quad (i = 1, ..., I)$
 $g_j(x, t) \ge 0, \quad (j = 1, ..., J)$
 $h_s(x, t) = 0, \quad (s = 1, ..., S)$

- Trajectories generation
- Repair method
- Evaluation
- Evolution

- Trajectories generation
- Repair method
- Evaluation
- Evolution

- Trajectories generation
- Repair method
- Evaluation
- Evolution

Cost

- Trajectories generation
- Repair method
- Evaluation
- Evolution

Cost

An example of a robotic manipulator

The Dynamic Optimization Problem:

 $\min_{\theta(t)} \phi(t)$ s.t.: $r_e = P(t)$ $\phi(t) = d_1 + d_2 + d_3$

The Optimal Adaptation Problem: $\min_{\boldsymbol{\theta}(t)} \{ \boldsymbol{\theta}(\boldsymbol{\theta}), T(\boldsymbol{\theta}) \}$, $t \in [960, 970]$ s.t. $x(t_0) = x_0$, $x(t_f) = x_f$ $T_{i,l} \le T_i \le T_{i,u}$, (i = 1,2,3)t=960s t=1000s 0.5 0.5 0 -0.5 -0.5 -0.5 -0.5

Future Research Directions

- Optimal adaptation for multi-objective dynamic optimization problems.
- F_2
- Changes of preferences: How to adapt to a different optimal configuration?
 - Changes of objective functions: Which configuration to choose?

Future Research Directions

• Optimal adaptation for multi-objective dynamic optimization problems.

Other Issues

- Dealing with uncertainties.
- Active Robust Optimization Problems.

Thank you

Any questions?

The Repair Method

Trajectory Codification

 $v(t_0) = 0$ $v(t_f) = 0$

$$x(t_0) = x_0$$
$$x(t_f) = x_f$$

The Repair Method

Trajectory Codification

 $v(t_0) = 0$ $v(t_f) = 0$

 $\begin{aligned} x(t_0) &= x_0 \\ x(t_f) &= x_f \end{aligned}$

 $v^{**}dt$

$$a \notin a^{**} a^{*} a^{**} a^{*} a^{*}$$

The Repair Method

Trajectory Codification

 $v(t_0) = 0$ $v(t_f) = 0$

 $\begin{aligned} x(t_0) &= x_0 \\ x(t_f) &= x_f \end{aligned}$

Thank you

Any questions?