Osama Khalifa, David Corne, Mike Chantler, Fraser Halley

= material liberated from:

David Blei's topic modelling resources

http://www.cs.princeton.edu/~blei/topicmodeling.html and maybe others

Q: how can I understand 1,000,000 documents without reading them?

Topic modeling provides methods for automatically organizing, understanding, searching, and summarizing large electronic archives.

- Discover the hidden themes that pervade the collection.
- Annotate the documents according to those themes.
- Use annotations to organize, summarize, and search the texts.

A topic is a probability distribution over words

Topic 247 Topic 5 Topic 43 Topic 56

word	prob.
DRUGS	.069
DRUG	.060
MEDICINE	.027
EFFECTS	.026
BODY	.023
MEDICINES	.019
PAIN	.016
PERSON	.016
MARIJUANA	.014
LABEL	.012
ALCOHOL	.012
DANGEROUS	.011
ABUSE	.009
EFFECT	.009
KNOWN	.008
PILLS	.008

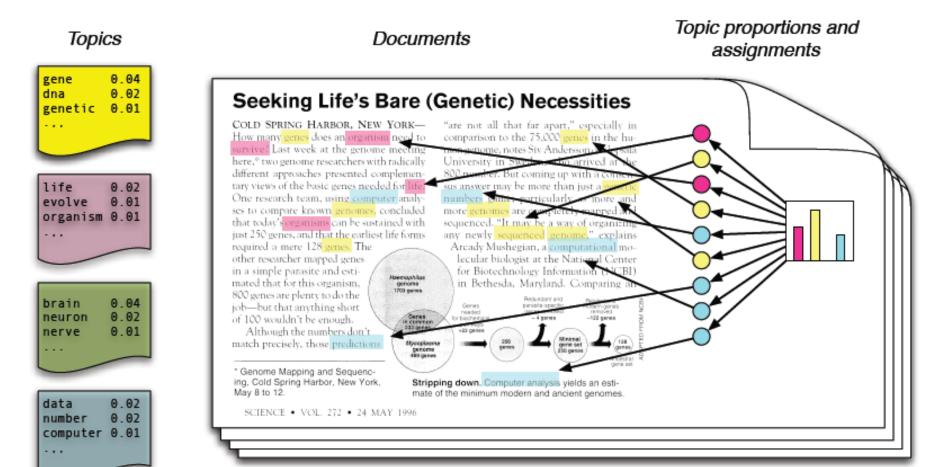
word	prob.
RED	.202
BLUE	.099
GREEN	.096
YELLOW	.073
WHITE	.048
COLOR	.048
BRIGHT	.030
COLORS	.029
ORANGE	.027
BROWN	.027
PINK	.017
LOOK	.017
BLACK	.016
PURPLE	.015
CROSS	.011
COLORED	.009

word	prob.
MIND	.081
THOUGHT	.066
REMEMBER	.064
MEMORY	.037
THINKING	.030
PROFESSOR	.028
FELT	.025
REMEMBERED	.022
THOUGHTS	.020
FORGOTTEN	.020
MOMENT	.020
THINK	.019
THING	.016
WONDER	.014
FORGET	.012
RECALL	.012

word	prob.
DOCTOR	.074
DR.	.063
PATIENT	.061
HOSPITAL	.049
CARE	.046
MEDICAL	.042
NURSE	.031
PATIENTS	.029
DOCTORS	.028
HEALTH	.025
MEDICINE	.017
NURSING	.017
DENTAL	.015
NURSES	.013
PHYSICIAN	.012
HOSPITALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

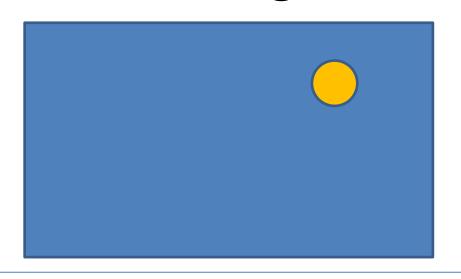
A document (e.g. an EPSRC project summary) is a probability distribution over topics



TFIDF / Bag of Words / etc

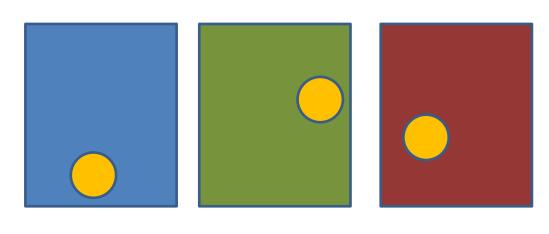
Document is a single point in doc space

TFIDF / Bag of Words / etc



Document is a single point in doc space

Topic Modelling



Document is a vector of points
In small num of meaningful spaces

atopic model

Is a model of: a document corpus

It has a COLLECTION T of TOPICS

Each TOPIC is a distribution over **WORDS**

For each DOCUMENT Di there is a

distribution over TOPICS (usually sparse)

atopic model

Is a model of: a document corpus

It has a COLLECTION T of TOPICS

Each TOPIC is a distribution over WORDS

For each DOCUMENT Di there is a

distribution over TOPICS (usually sparse)

And to do the maths:

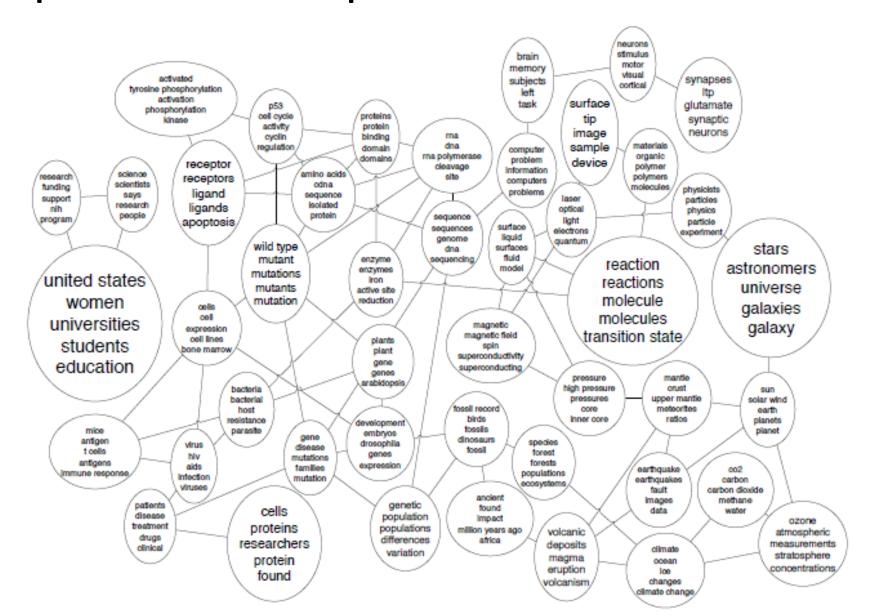
For each WORD in a document,

there is a TOPIC assignment

Some of the 600 ICT topics www.researchperspectives.org/

267 flexible enable required future approach (43) 596 nuclear waste reactor fuel radioactive (43) 042 electron energy electrical exciting charge (43) 566 change research work information technology (43) 010 optical switching transmission wavelength modules (42) 591 statistical models inference data analysis (42) 379 india uk technology rural economy (42) 540 biological systems biology inspired synthetic (42) 442 search retrieval information index query (42) 116 security protocols key cryptographic cryptography (41) 487 face expression emotional systems facial (41) 221 data mining analysis large datasets (41) 152 applications development including specific medical (41)

topic models helps us discover structure



The maths: inferring a TM from a document corpus

To generate a document:

To generate a document:

SAMPLE from a distribution D_T over the topics T

To generate a document:

SAMPLE from a distribution D_T over the topics T

Repeat until document is written:

To generate a document:

SAMPLE from a distribution D_T over the topics T

Repeat until document is written:

SAMPLE a topic z from D_T

To generate a document:

SAMPLE from a distribution D_T over the topics T

Repeat until document is written:

SAMPLE a topic z from D_T

SAMPLE a word w from z

To generate a document:

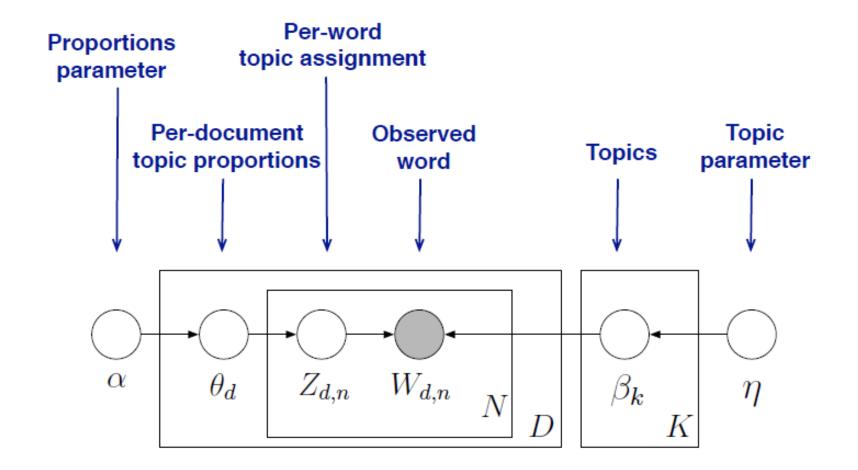
SAMPLE from a distribution D_T over the topics T

Repeat until document is written:

SAMPLE a topic z from D_T

SAMPLE a word w from z

Perhaps only valid for Shakespearean monkeys, but:



$$\prod_{i=1}^{K} p(\beta_{i} \mid \eta) \prod_{d=1}^{D} p(\theta_{d} \mid \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} \mid \theta_{d}) p(w_{d,n} \mid \beta_{1:K}, z_{d,n}) \right)$$

Joint probability of the topics and D_T s

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D})$$

$$= \prod_{i=1}^{K} p(\beta_i) \prod_{d=1}^{D} p(\theta_d) \left(\prod_{n=1}^{N} p(z_{d,n} \mid \theta_d) p(w_{d,n} \mid \beta_{1:K}, z_{d,n}) \right)$$

... basically gives likelihood of a given TM of your corpus

Joint probability of the topics and D_T s

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D})$$

$$= \prod_{i=1}^{K} p(\beta_i) \prod_{d=1}^{D} p(\theta_d) \left(\prod_{n=1}^{N} p(z_{d,n} \mid \theta_d) p(w_{d,n} \mid \beta_{1:K}, z_{d,n}) \right)$$

... basically gives likelihood of a given TM of your corpus

Do some mathematical jiggery-pokery (conjugate your priors, etc...), and ...

LDA / Gibbs sampling

Represent your corpus as a huge vector of topic assignments

[z1, z2, z3, z4, ..., zn-1, zn]

Run MCMC to find an assignment that maximises the likelihood

LDA/Gibbs sampling is popular, standard, faourite

Plenty else going on in the line of more sophisticated models (dynamic topics, topic hierarchies, correlated TMs, etc...)

... all with their associated
Bayesian/statistical inference schemes
full of questionable assumptions and
simplifications

EVALUATING TMs

Perplexity of a test corpus D_{test}

$$\frac{-\sum_{d \in D_{test}} \log P(w_d | \mathcal{M})}{\sum_{d \in D_{test}} N_d}$$

Does the test corpus tend to use words that have high probabilities within M?

Pointwise Mutual Information (PMI)

$$Pmi(w_i, w_j) = \log \frac{P(w_i, w_j)}{P(w_i)P(w_j)}.$$

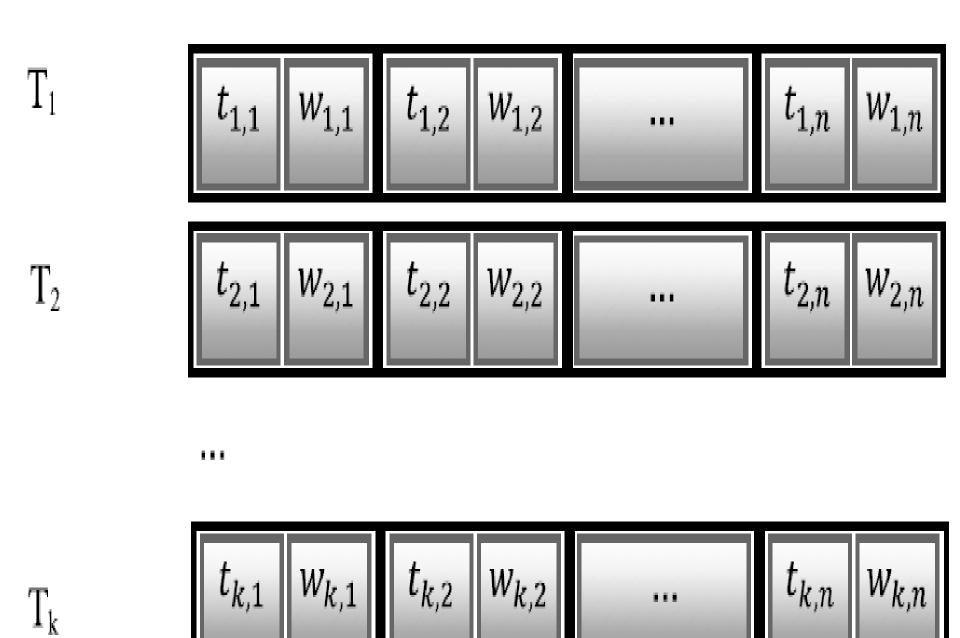
Do documents in the test corpus tend to use words from same topic within a document?

Coverage

$$Coverage_d = \sqrt{\sum_{w \in d} \left(tf_d(w) - \sum_{i=1}^K T_i(w) Prop_d(T_i)\right)^2}$$

Does the TM 'cover' the majority of words in most documents?

LDA vs MOEA-TM



(an important aside)

The ML/AI topic modelling community seem to be focussed on scale

bigger and bigger corpuses, clever tricks to infer TMs fast,

(an important aside)

We are focussed on quality reasonably sized corpuses
TMs that are coherent, and make sense; and who cares if it takes a few hours to run?

LDA vs MOEA-TM

'Standalone MOEA-TM'

Evolves TMs using 2 objectives: coverage and PMI uses small no. of words per topic

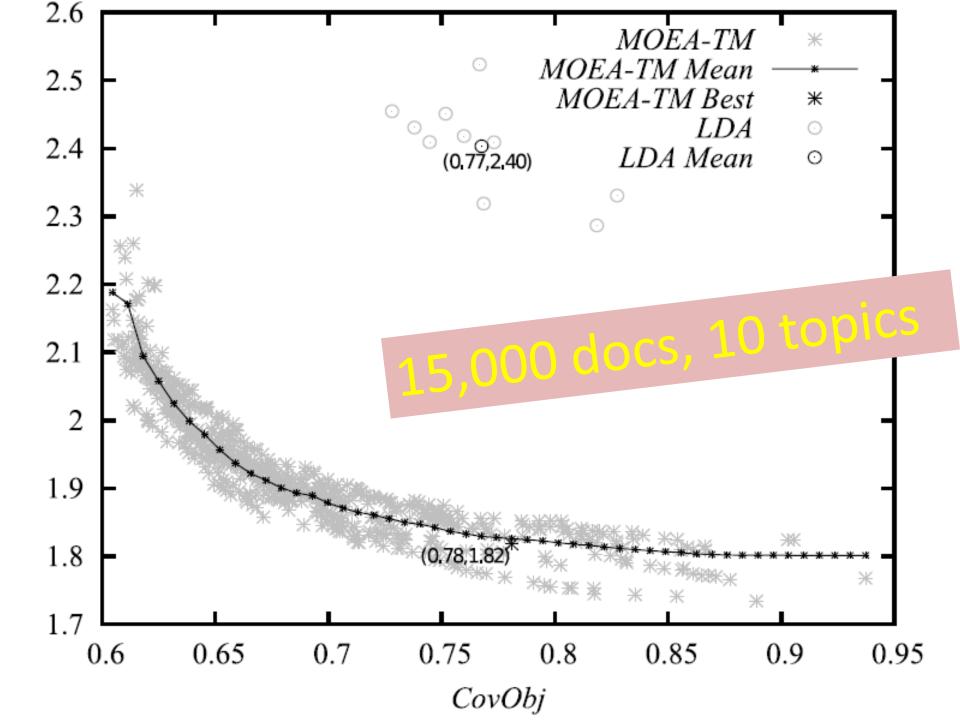
LDA-initialized MOEA-TM

coverage, PMI, and perplexity compare with LDA run for equivalent t

Everything is here

is.gd/MOEATM

http://mallet.cs.umass.edu



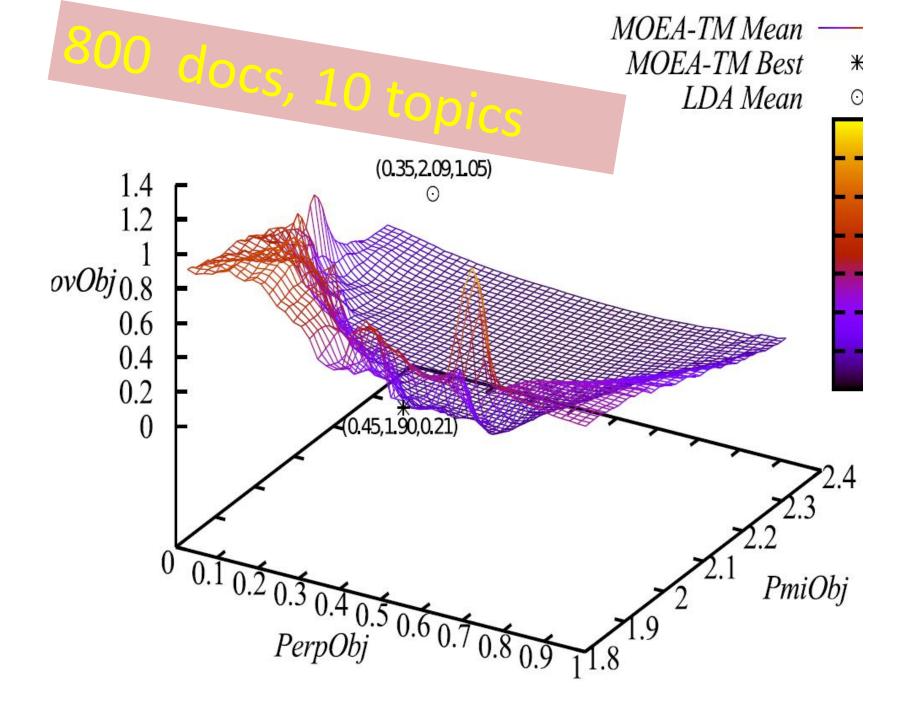
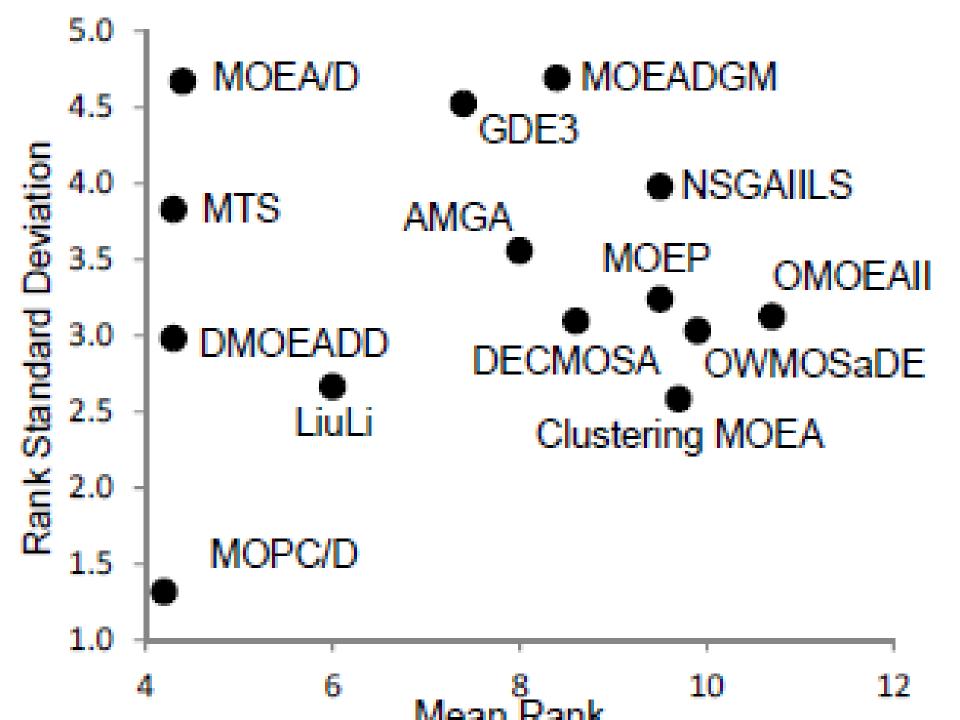


Table 2. PMI for standalone MOEA-TM and LDA for, for three corpora / ten topics.

2D		EA TM	LDA			
	Mean PMI	St. Deviation	Mean PMI	St. Deviation		
Wiki Corpus	0.3483	0.0078	0.2158	0.0163		
EPSRC Corpus	0.4264	0.0080	0.3371	0.0106		
News Corpus	0.3913	0.0077	0.2448	0.0216		

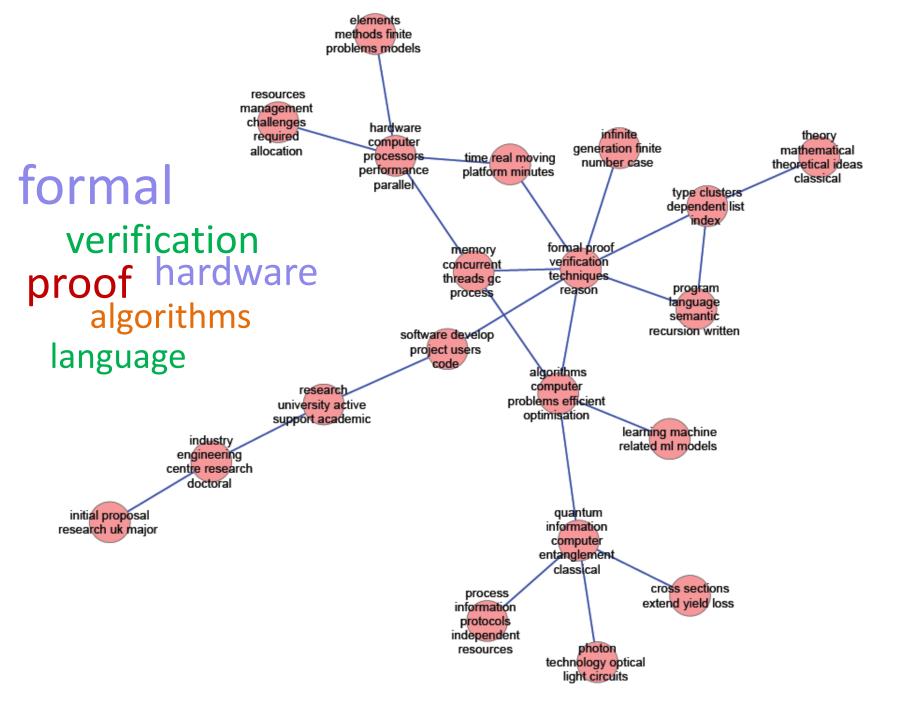
Table 4. PMI scores for LDA-Initialized MOEA TM and Pure LDA for the three corpora with ten topics.

2D	MOEA TM			LDA				
		St. Dev						
Wiki Corpus	0.3105	0.0135	8.0716	0.0294	0.2013	0.0194	8.0822	0.0262
EPSRC Corpus	0.3889	0.0085	15.034	0.1005	0.3404	0.0101	15.096	0.0960
News Corpus	0.3428	0.0159	51.990	0.5377	0.2445	0.0208	53.261	0.6977



MO is better at TM than LDA

but, faster would be nice currently we are using many more topics, and optimizing PMI, using fast (sampled) approximations



600 topics model / ICT grants only / predictions of future funded topic interaction based on Adamic/Adar scores for currently unconnected topics

Highest rated


```
Computer

mind scienced kind

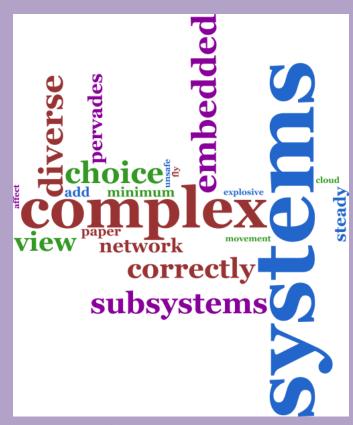
ubiquitous foundation
increasingly entertainment
increasingly software massive
combined so
```

data analytics in personal / entertainment / ubiquitous computing?

600 topics model / ICT grants only / predictions of future funded topic interaction based on Adamic/Adar scores for currently unconnected topics

5th Highest rated

function exploit
fundamental
electrical
structure
properties
semiconductor performance
interfacelow optoelectronic
devices electronic
diodes basedmaterials
fabrication
conventional
transistors



Complex systems research in the semiconductor/optoelectronics systems?

stop now