Do Hypervolume Regressions hinder EMOA Performance? Surprise and Relief.

L. Judt O. Mersmann B. Naujoks

TU Dortmund University and Cologne University of Applied Sciences

March 2013

Prior findings

SMS-EMOA

- μ + 1 hypervolume based selection
- least contributer replaced by better one

Hypervolume decreases appear frequently

ZDT1, $\mu = 100$

DTLZ2, $\mu = 10$

Prior findings

Different reasons identified

(cf. L. Judt et al. @ MCDM 2011)

- 2D case special handling of boundary solutions
- 3D case adaptive reference point yields different results if
 - reference point changes
 - performance is calculated w.r.t. fixed reference point

Research question

 Does this matter? Negative influence on final outcome?

Selection strategies under investigation

4 strategies under investigation, combinations of

- adaptive and fixed reference point
- whether or not decreases are accepted

Adaptive reference point schemes

• adaptive/with

- adaptive reference point
- decreases in hypervolume are accepted
- the standard case

adaptive/without

- adaptive reference point
- decreases in hypervolume are omitted
- selection not accomplished
- a repairing case

Selection strategies under investigation

Fixed reference point schemes

- fixed/without
 - reference point fixed like for indicator calculation
 - decreases are omitted
 - the assured implementation
 - decreases may appear in 2D
 - no decreases possible for higher dimensional case
- fixed/with
 - reference point fixed
 - decreases in hypervolume are accepted
 - the impossible case (decreases are not expected)
 - just to have all combinations?

Experimental setup

- Different dimensions under investigation
 - 2D: ZDT1 ZDT4
 - 3D: DTLZ1 DTLZ3
 - 4D: DTLZ2
- fixed parameterization for variation
- μ = 100
- 50 runs per combination
- 100 000 fitness function evaluations each

Reference points considered

ZDT1 – ZDT3:	[11, 11]	DTLZ1:	[1000, 1000, 1000]
ZDT4:	[1000, 1000]	DTLZ2:	[11, 11, 11]
4-dim. DTLZ2:	[11, 11, 11, 11]	DTLZ3:	$\left[2000, 2000, 2000\right]$

Presentational setup

Factors to consider

- test function
- reference point handling
- number of fitness function evaluations (FFE)

Histograms of 50 independent runs

- 1 progression over FFE for one representative instance
- 2 results for all instances at 30 000 FFE (recommended number in literature)

Coming next: Grid of 4x4 such histograms ...

Results: 2D, ZDT2 progression

Results: 2D, all test functions at 30 000 FFE

(ZDT4: value of 990 000 subtracted from actual hypervolume value!)

B. Naujoks (CUAS)

Results: 2D

- Two with and two without schemes provide identical results
- Results solely depending on acceptance of decreases

In line with expectations! In 2D:

- Decreases can arise for fixed strategies
- Decreases independent of reference point handling

However

- more and more hypervolume gained on progression
- similar distributions at the end

Best variant? No clear evidence!

Advise: Continue using standard implementation

Results: 3D, DTLZ2, progression

Results: 3D, all test functions at 30 000 FFE

Most striking

- variant fixed/without differs from variant fixed/with
- Decreases (in 3D) have not been expected due to invoking same reference point for selection as for performance measure
- Moreover, they were thought to be impossible!
- Even strict Pareto compliance is violated, i.e. dominating point accepted, but hypervolume decreases

Solution sets $\{\mathbf{y}_1, \ldots, \mathbf{y}_n, \mathbf{y}_{n+1}\}$ found with

$$\widehat{hyp}_{r}(\{\boldsymbol{y}_{1},\ldots,\boldsymbol{y}_{n}\})<\widehat{hyp}_{r}(\{\boldsymbol{y}_{1},\ldots,\boldsymbol{y}_{n-1},\boldsymbol{y}_{n+1}\})$$

even though \mathbf{y}_n dominates \mathbf{y}_{n+1}

 (hyp_r) : numerical approximation of hypervolume w.r.t. reference point **r**)

Results: 3D, all test functions at 30 000 FFE

Deeper investigation

- Differences very small: in 15th or 16th significant digit (using double precision floating point numbers)
- changes in hypervolume are of same order as observed errors in numerical approximation (of hypervolume)

Even worth: Only able to detect effects if one solution dominates the other but they also occur for incomparable solutions ⇒ no criterion to decide

Results

	after 500 fe	after 10 000 fe	after 30000 fe	after 100 000 fe
DTLZ1	7	34	166	1274
DTLZ2	3	4	4	5
DTLZ3	10	44	200	551
4dim DTLZ2	3	3	3	3

Mean number of decreases with fixed/with

Reference points considered:

ZDT1 – ZDT3:	[11, 11]	DTLZ1:	[1000, 1000, 1000]
ZDT4:	[1000, 1000]	DTLZ2:	[11, 11, 11]
4-dim. DTLZ2:	[11, 11, 11, 11]	DTLZ3:	$\left[2000, 2000, 2000\right]$

- Avoid reference points far away from Pareto-front?
- Still a question whether decreases matter!

Results: 3D, all test functions at 30 000 FFE

(Subtractions: 999 999 900 for DTLZ1, 7 999 900 000 for DTLZ3!)

B. Naujoks (CUAS)

Results: 4D, progression

(Subtractions: 14 000 for 4D DTLZ2!)

B. Naujoks (CUAS)

00⁰0

Summary

Selection variants perform differently

But

No significant differences are observed!

- all clear for hypervolume selection
- operator seems to be very reliable and robust

Implications?

- be aware of possible issues from numerics!
 - possible influence on hypervolume approximation techniques?
 - small mistakes in hypervolume will not worsen overall performance
- New reference point adaptation techniques?

Thanks,

questions?

Graduate or undergraduate student?

There is a GECCO students workshop! **Deadline:** March, 28th

More info? Contact me or visit gecco2013studentws.tiddlyspace.com twitter.com/GECC02013SWS

