## Cone Based Hypervolume Indicator

Construction, Properties, and Efficient Computation

## Michael Emmerich, André Deutz, Johannes Kruisselbrink, Pradyumn Shukla


$\begin{array}{ll}\text { Leiden University } & \text { AIFB } \\ \text { The Netherlands } & \text { Karlsruhe, Germany }\end{array}$
M. Emmerich, A. Deutz, J. Kruisselbrink, and P. Shukla.

Cone Based Hypervolume Indicator

## Brief Summary

Cone Dominance
Cone Based Hypervolume Indicator
Pyramidal Cones
Efficient Computation
Optimal distribution
CHI-EMOA
Summary and Outlook

Cone Based Hypervolume Indicator Cone Dominance

## What are (convex, pointed) cones?

Cone Based Hypervolume Indicator Cone Dominance

## What are (convex, pointed) cones?

Definition (cone)
A subset $\mathcal{C} \subseteq \mathbb{R}^{\boldsymbol{m}}$ is called a cone, iff $\boldsymbol{\alpha} \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\boldsymbol{\alpha} \in \mathbb{R}, \boldsymbol{\alpha}>\mathbf{0}$.

Cone Based Hypervolume Indicator Cone Dominance
What are (convex, pointed) cones?

Definition (cone)
A subset $\mathcal{C} \subseteq \mathbb{R}^{m}$ is called a cone, iff $\alpha \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\alpha \in \mathbb{R}, \alpha>0$.

Definition (convex cone)
A cone $\mathcal{C}$ in $\mathbb{R}^{\boldsymbol{m}}$ is convex, iff $\alpha \mathbf{p}^{(1)}+(1-\alpha) \mathbf{p}^{(2)} \in \mathcal{C}$ for all $\mathbf{p}^{(1)} \in \mathcal{C}$ and $\mathbf{p}^{(2)} \in \mathcal{C}$ and for all $\mathbf{0} \leq \alpha \leq \mathbf{1}$.

Cone Based Hypervolume Indicator Cone Dominance
What are (convex, pointed) cones?

## Definition (cone)

A subset $\mathcal{C} \subseteq \mathbb{R}^{\boldsymbol{m}}$ is called a cone, iff $\boldsymbol{\alpha} \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\boldsymbol{\alpha} \in \mathbb{R}, \boldsymbol{\alpha}>\mathbf{0}$.

Definition (convex cone)
A cone $\mathcal{C}$ in $\mathbb{R}^{\boldsymbol{m}}$ is convex, iff $\alpha \mathbf{p}^{(1)}+(1-\alpha) \mathbf{p}^{(2)} \in \mathcal{C}$ for all $\mathbf{p}^{(1)} \in \mathcal{C}$ and $\mathbf{p}^{(2)} \in \mathcal{C}$ and for all $\mathbf{0} \leq \alpha \leq \mathbf{1}$.

Definition (pointed cone)
A cone $\mathcal{C}$ in $\mathbb{R}^{\boldsymbol{m}}$ is pointed, iff $\mathcal{C} \cap-\mathcal{C} \subseteq\{0\}$.

Cone Based Hypervolume Indicator Cone Dominance

What are cone orders?

Definition (Minkowski sum)
Let $\boldsymbol{A}$ and $\boldsymbol{B}$ denote sets of vectors in $\mathbb{R}^{\boldsymbol{m}}$. Then

$$
\boldsymbol{A} \oplus \boldsymbol{B}=\{\mathbf{a}+\mathbf{b} \mid \mathbf{a} \in \boldsymbol{A} \text { and } \mathbf{b} \in \boldsymbol{B}\}
$$





Example for the Minkowski sum.

Cone Based Hypervolume Indicator Cone Dominance

What are cone orders?

## Definition (cone order)

Let $\boldsymbol{C}$ denote a pointed convex cone:

$$
\mathrm{x}^{1} \preceq c \mathrm{x}^{2} \Leftrightarrow \mathrm{x}^{2} \in\{\mathrm{x}\}^{1} \oplus C .
$$



Pareto order is a special case of a cone order.

Cone Based Hypervolume Indicator Cone Dominance

Minimal sets
Lemma (Minima for acute cones)
$\boldsymbol{C} \subset \boldsymbol{C}_{\text {Pareto }} \Rightarrow \forall \boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{m}}: \operatorname{Minima}_{\text {Pareto }}(\boldsymbol{A}) \supseteq \operatorname{Minima}^{C}(\boldsymbol{A})$

## Lemma (Minima for obtuse cones)

$\boldsymbol{C} \supset \boldsymbol{C}_{\text {Pareto }} \Rightarrow \forall \boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{m}}: \operatorname{MinimaPareto}(\boldsymbol{A}) \subseteq \operatorname{Minimac}(\boldsymbol{A})$


Cone Based Hypervolume Indicator Cone Based Hypervolume Indicator

## Cone Based Hypervolume Indicator (CHI)

## Definition (Cone-based hypervolume (CHI))

For $\boldsymbol{P} \in \mathbb{R}^{\boldsymbol{m}}$ and a reference point $\mathbf{r}$ with $\forall \mathbf{p} \in \boldsymbol{P}: \mathbf{p} \preceq c \mathbf{r}:$

$$
\operatorname{CHI}(\boldsymbol{P})=\text { LebesgueMeasure }(\underbrace{(\boldsymbol{P} \oplus \boldsymbol{C})} \cap(\underbrace{\{\boldsymbol{r}\} \ominus \boldsymbol{C})}) .
$$

(1)
(2)
(1) cone-dominated subspace
(2) anti-cone for $\boldsymbol{r}$.


Cone Based Hypervolume Indicator Pyramidal Cones

## Definition of $\gamma$ cones




## Definition ( $\boldsymbol{\gamma}$-cone)

A cone spanned by $\boldsymbol{m}$ base vectors, $\mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(\boldsymbol{m})}$ :

1. the angle between the and each of the base vectors $\mathbf{c}^{(i)}$ is $\gamma$
2. each base vector $\mathbf{c}^{(\boldsymbol{i})}$ is a unit vector in the plane spanned by 1 and $\mathbf{e}^{(i)}$.

Cone Based Hypervolume Indicator
Pyramidal Cones
Construction of $\gamma$ cones

Theorem (Base vectors of pyramidal $\boldsymbol{\gamma}$ cone)

$$
c_{j}^{(i)}=\{\begin{array}{ll}
(1 / \sqrt{m-1}) \sin (\alpha) & i \neq j \\
\cos (\alpha) & i=j
\end{array}, \alpha=\underbrace{\arccos (1 / \sqrt{m})}_{\theta}-\gamma
$$

Proof in coordinate-free geometric algebra: Rotate $\mathbf{e}^{(i)}$ in the plane determined by the normalized bivector $\boldsymbol{B}=\left(\mathrm{e}^{(i)} \wedge \mathbf{a}\right) / \sin (\boldsymbol{\theta})$ over an angle $\boldsymbol{\alpha}$ to get $\mathbf{c}^{(\boldsymbol{i})}$ :

$$
c^{(i)}=\exp \left(-\frac{\alpha}{2} \frac{\mathrm{e}^{(i)} \wedge \mathrm{a}}{\sin (\theta)}\right) \mathrm{e}^{(i)} \exp \left(\frac{\alpha}{2} \frac{\mathrm{e}^{(i)} \wedge \mathrm{a}}{\sin (\theta)}\right)
$$

Cone Based Hypervolume Indicator Pyramidal Cones

## Fundamental Transformation



Cone Based Hypervolume Indicator Pyramidal Cones

## Efficient Computation of CHI

In two dimensions we can use a simple partitioning scheme:


Cone Based Hypervolume Indicator Efficient Computation

## Computation of CHI in m dimensions

## Lemma (Billingsley: Probability and Measure, 1995)

We denote the Lebesgue measure by $\boldsymbol{\lambda}($.$) . Let \boldsymbol{F}(\mathrm{x})=\mathrm{T} \mathrm{x}+\mathrm{x}_{0}$ denote an non-singular affine transformation, then

$$
\lambda(F A)=\operatorname{det}(T) \lambda(A) .
$$

Algorithm: m-dimensional CHI computation
Input: Cone base $\mathbf{C}, \boldsymbol{P} \subset \mathbb{R}^{\boldsymbol{m}}$, reference point $\mathbf{r}$

1. Let $\boldsymbol{Q}=\left\{\mathbf{q}^{(1)}, \ldots, \mathbf{q}^{(\mu)}\right\}$, with $\mathbf{q}^{(i)}=\mathbf{C}^{-1} \mathbf{p}^{(i)}$, and $\mathbf{r}^{\prime}=\mathbf{C}^{-1} \mathbf{r}$.
2. Compute the standard hypervolume $\operatorname{HI}\left(\boldsymbol{Q}, \boldsymbol{r}^{\prime}\right)$.
3. Return $\operatorname{CHI}(\boldsymbol{P})=\left(\mathbf{1} / \operatorname{det} \mathbf{C}^{\mathbf{- 1}}\right) \cdot \mathrm{HI}\left(\boldsymbol{Q}, \mathbf{r}^{\prime}\right)$.

Cone Based Hypervolume Indicator
Efficient Computation

## Efficient Computation of CHI

## Lemma

For any fixed dimension $\boldsymbol{m}>\mathbf{1}$, the computational complexity of CHI in the size of an approximation set $|\boldsymbol{A}|$ is equal to that of HI.

## Proof.

- Recall: The computational complexity of HI is in $\boldsymbol{\Omega}(|\boldsymbol{A}| \log |\boldsymbol{A}|)$ (Beume et al. 2009).
- The complexity of the reduction of CHI to HI is in $\mathbf{O}(|\boldsymbol{A}|)$.

Hence, for $\boldsymbol{m}=\mathbf{2 , 3}$ CHI has complexity $\boldsymbol{\Theta}(\boldsymbol{n} \log \boldsymbol{n})$.

Cone Based Hypervolume Indicator
Efficient Computation
Efficiently computing all hypervolume contributions

## Lemma

Computing all contributions

$$
\Delta C H I(a, A)=C H I(A)-C H I\left(A-\left\{a_{i}\right\}\right)
$$

can be reduced in linear time to computing all contributions to the standard hypervolume.

- Asymptotically optimal algorithm [Emmerich and Fonseca, EMO 2011] with complexity $\boldsymbol{O}(|\boldsymbol{A}| \log |\boldsymbol{A}|)$ can be applied for $\boldsymbol{m}=2,3$.
- Makes efficient implementation of steady state evolutionary algorithms such as SMS-EMOA, Steady-state IBEA, and MOO-CMA possible.

Cone Based Hypervolume Indicator Optimal distribution

## Definition of optimal $\boldsymbol{\mu}$-distribution

## Definition (Auger, Bader, Brockhoff and Zitzler, FOGA09)

For a Pareto front $\mathcal{Y}$ the optimal $\boldsymbol{\mu}$-distribution is defined as:

$$
\boldsymbol{P}_{\mu}^{*} \in \arg \max _{\boldsymbol{P} \subseteq \mathcal{Y},|\boldsymbol{P}| \leq \mu} \mathrm{HI}(\boldsymbol{P})
$$

optimal $\boldsymbol{\mu}$-distribution of HI for $\left(|\boldsymbol{y}|^{\gamma}\right)^{1 / \gamma} \equiv 1, \gamma \in\left\{\frac{1}{4}, \frac{1}{2}, 1,2\right\}$ :


Cone Based Hypervolume Indicator Optimal distribution

For the CHI optimal $\boldsymbol{\mu}$-distributions we proved two lemmas:

## Lemma

For a compact, connected linear Pareto front in $\mathbb{R}^{2}$ the optimal $\boldsymbol{\mu}$-distribution is evenly spaced for $\boldsymbol{\gamma}>\mathbf{0}$.

## Lemma

For a compact and connected Pareto front in $\mathbb{R}^{2}$ the optimal $\boldsymbol{\mu}$-distribution is evenly spaced in the Manhattan distance for $\gamma \rightarrow \mathbf{0}$.

Both proofs exploit that a point has only a local influence on the CHI. This was also used in similar proofs for the HI in (Auger, Bader, Brockhoff and Zitzler [2009]).

Cone Based Hypervolume Indicator Optimal distribution

## CHI EMOA Results in 2 dimensions



Figure: Left: an obtuse cone, $\gamma=\pi / 3$. Center: a Pareto cone, $\gamma=\pi / 4$. Right: an acute cone $\gamma=\pi / \mathbf{8}$.

Cone Based Hypervolume Indicator CHI-EMOA

## CHI-EMOA

- We construct a simple $(\boldsymbol{\mu}+\mathbf{1})$-EMOA by modifying SMS-EMOA.
- Selection criterion:

Cone Based Hypervolume Indicator CHI-EMOA

## CHI-EMOA

- We construct a simple $(\boldsymbol{\mu}+\mathbf{1})$-EMOA by modifying SMS-EMOA.
- Selection criterion:
- non-dominated sorting based on the cone $\boldsymbol{C} \cup \boldsymbol{C}_{\text {Pareto }}$. (Strictest order)

Cone Based Hypervolume Indicator CHI-EMOA

## CHI-EMOA

- We construct a simple $(\boldsymbol{\mu}+\mathbf{1})$-EMOA by modifying SMS-EMOA.
- Selection criterion:
- non-dominated sorting based on the cone $\boldsymbol{C} \cup \boldsymbol{C}_{\text {Pareto }}$. (Strictest order)
- CHI contributions replace HI contributions as a secondary selection criterion.

Cone Based Hypervolume Indicator CHI-EMOA

## CHI EMOA Results in 2 dimensions



Figure: L: obtuse: $\gamma=\pi / 3$. C: $\gamma=\pi / 4$. R: acute $\gamma=\pi / \mathbf{8}$.

- Generalized Schaffer problems with scalable curvature (Emmerich and Deutz, EMO 2007)
- The number of function evaluations is 50000 .
- 10 D test problems.

Cone Based Hypervolume Indicator CHI-EMOA

## Results on 3-D superspheres problem



Cone Based Hypervolume Indicator Summary and Outlook

## Summary

- CHI is a 'natural' hypervolume indicator for cone-orders

Cone Based Hypervolume Indicator Summary and Outlook

## Summary

- CHI is a 'natural' hypervolume indicator for cone-orders
- $\gamma$-cones: Efficient construction and computation of CHI

Cone Based Hypervolume Indicator Summary and Outlook

## Summary

- CHI is a 'natural' hypervolume indicator for cone-orders
- $\gamma$-cones: Efficient construction and computation of CHI
- CHI allows scaling from knee point focused to evenly spaced via cone-parameter $\gamma$

Cone Based Hypervolume Indicator Summary and Outlook

## Summary

- CHI is a 'natural' hypervolume indicator for cone-orders
- $\gamma$-cones: Efficient construction and computation of CHI
- CHI allows scaling from knee point focused to evenly spaced via cone-parameter $\gamma$
- CHI EMOA: sort by contributions and strictest order; Search gets more difficult for small $\gamma$

Cone Based Hypervolume Indicator Summary and Outlook

## Outlook

- CHI can also be used for curvature based preference formulation*
*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013 ]

Cone Based Hypervolume Indicator Summary and Outlook

## Outlook

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)
*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013 ]

Cone Based Hypervolume Indicator Summary and Outlook

## Outlook

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)
- Future work:
- Additional cases $\boldsymbol{\mu}$-optimal distributions
*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013 ]

Cone Based Hypervolume Indicator Summary and Outlook

## Outlook

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)
- Future work:
- Additional cases $\boldsymbol{\mu}$-optimal distributions
- Algorithm design aspects: can we do better?
*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013 ]

Cone Based Hypervolume Indicator Summary and Outlook

## End of our presentation

## Questions?



