Cone Based Hypervolume Indicator Construction, Properties, and Efficient Computation

Michael Emmerich, André Deutz, Johannes Kruisselbrink, Pradyumn Shukla

Leiden University AIFB The Netherlands Karlsru

AIFB Karlsruhe, Germany

Cone Based Hypervolume Indicator

Brief Summary

Cone Dominance

Cone Based Hypervolume Indicator

Pyramidal Cones

Efficient Computation

Optimal distribution

CHI-EMOA

'20

Summary and Outlook

2/20

What are (convex, pointed) cones?

What are (convex, pointed) cones?

Definition (cone)

A subset $\mathcal{C} \subseteq \mathbb{R}^m$ is called a cone, iff $\alpha \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\alpha \in \mathbb{R}, \alpha > \mathbf{0}$.

What are (convex, pointed) cones?

Definition (cone)

A subset $\mathcal{C} \subseteq \mathbb{R}^m$ is called a cone, iff $\alpha \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\alpha \in \mathbb{R}, \alpha > \mathbf{0}$.

Definition (convex cone)

A cone C in \mathbb{R}^m is convex, iff $\alpha p^{(1)} + (1 - \alpha)p^{(2)} \in C$ for all $p^{(1)} \in C$ and $p^{(2)} \in C$ and for all $0 \le \alpha \le 1$.

What are (convex, pointed) cones?

Definition (cone)

A subset $\mathcal{C} \subseteq \mathbb{R}^m$ is called a cone, iff $\alpha \mathbf{p} \in \mathcal{C}$ for all $\mathbf{p} \in \mathcal{C}$ and for all $\alpha \in \mathbb{R}, \alpha > \mathbf{0}$.

Definition (convex cone)

A cone C in \mathbb{R}^m is convex, iff $\alpha p^{(1)} + (1 - \alpha)p^{(2)} \in C$ for all $p^{(1)} \in C$ and $p^{(2)} \in C$ and for all $0 \le \alpha \le 1$.

Definition (pointed cone)

A cone \mathcal{C} in \mathbb{R}^m is pointed, iff $\mathcal{C} \cap -\mathcal{C} \subseteq \{\mathbf{0}\}$.

```
What are cone orders?
```

Definition (Minkowski sum)

Let **A** and **B** denote sets of vectors in \mathbb{R}^m . Then

 $A \oplus B = \{a + b \mid a \in A \text{ and } b \in B\}.$

Example for the Minkowski sum.

What are cone orders?

Definition (cone order)

Let \boldsymbol{C} denote a pointed convex cone:

 $x^1 \preceq_{\mathcal{C}} x^2 \Leftrightarrow x^2 \in \{x\}^1 \oplus \mathcal{C}.$

Pareto order is a special case of a cone order.

Minimal sets

5/20

Lemma (Minima for acute cones)

 $\boldsymbol{C} \subset \boldsymbol{C}_{\operatorname{Pareto}} \Rightarrow \forall \boldsymbol{A} \subset \mathbb{R}^m : \operatorname{Minima}_{\boldsymbol{Pareto}}(\boldsymbol{A}) \supseteq \operatorname{Minima}_{\boldsymbol{C}}(\boldsymbol{A})$

Lemma (Minima for obtuse cones)

 $\boldsymbol{C} \supset \boldsymbol{C}_{\text{Pareto}} \Rightarrow \forall \boldsymbol{A} \subset \mathbb{R}^m: \text{Minima}_{\boldsymbol{Pareto}}(\boldsymbol{A}) \subseteq \text{Minima}_{\boldsymbol{C}}(\boldsymbol{A})$

Cone Based Hypervolume Indicator Cone Based Hypervolume Indicator

Cone Based Hypervolume Indicator (CHI)

Definition (Cone-based hypervolume (CHI)) For $P \in \mathbb{R}^m$ and a reference point **r** with $\forall \mathbf{p} \in P : \mathbf{p} \preceq_C \mathbf{r}$: CHI(P) = LebesgueMeasure($(\underbrace{(P \oplus C)}_{(1)} \cap (\underbrace{\{\mathbf{r}\} \oplus C}_{(2)})$).

(1) cone-dominated subspace (2) anti-cone for \boldsymbol{r} .

6/20

Definition (γ -cone)

- A cone spanned by \boldsymbol{m} base vectors, $\mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(m)}$:
- 1. the angle between the α and each of the base vectors $\mathbf{c}^{(i)}$ is γ
- 2. each base vector $\mathbf{c}^{(i)}$ is a unit vector in the plane spanned by $\mathbf{1}$ and $\mathbf{e}^{(i)}$.

7/20

Construction of $\boldsymbol{\gamma}$ cones

Theorem (Base vectors of pyramidal γ cone)

$$c_{j}^{(i)} = \begin{cases} (1/\sqrt{m-1})\sin(\alpha) & i \neq j \\ \cos(\alpha) & i = j \end{cases}, \alpha = \underbrace{\arccos(1/\sqrt{m})}_{\theta} - \gamma$$

Proof in coordinate-free geometric algebra: Rotate $\mathbf{e}^{(i)}$ in the plane determined by the normalized bivector $B = (\mathbf{e}^{(i)} \wedge \mathbf{a}) / \sin(\theta)$ over an angle α to get $\mathbf{c}^{(i)}$:

$$\mathbf{c}^{(i)} = \exp(-rac{lpha}{2} \; rac{\mathbf{e}^{(i)} \wedge \mathbf{a}}{\sin(heta)}) \; \mathbf{e}^{(i)} \; \exp(rac{lpha}{2} \; rac{\mathbf{e}^{(i)} \wedge \mathbf{a}}{\sin(heta)}).$$

9/20

Fundamental Transformation

10/20

Efficient Computation of CHI

In two dimensions we can use a simple partitioning scheme:

Cone Based Hypervolume Indicator Efficient Computation

11/20

Computation of CHI in m dimensions

Lemma (Billingsley: Probability and Measure, 1995) We denote the Lebesgue measure by $\lambda(.)$. Let $F(x) = Tx + x_0$ denote an non-singular affine transformation, then

 $\lambda(\mathsf{F}\mathsf{A}) = \det(\mathsf{T})\lambda(\mathsf{A}).$

Algorithm: *m*-dimensional CHI computation Input: Cone base $\mathbf{C}, \mathbf{P} \subset \mathbb{R}^m$, reference point **r**

- 1. Let $Q = \{q^{(1)}, \dots, q^{(\mu)}\}$, with $q^{(i)} = C^{-1}p^{(i)}$, and $r' = C^{-1}r$.
- 2. Compute the standard hypervolume HI(Q, r').
- 3. Return CHI(P) = (1/det C⁻¹) · HI(Q, r').

Cone Based Hypervolume Indicator Efficient Computation

Efficient Computation of CHI

Lemma

For any fixed dimension m > 1, the computational complexity of CHI in the size of an approximation set $|\mathbf{A}|$ is equal to that of HI.

Proof.

- Recall: The computational complexity of HI is in $\Omega(|\mathbf{A}| \log |\mathbf{A}|)$ (Beume et al. 2009).
- The complexity of the reduction of CHI to HI is in O(|A|).

Hence, for m = 2, 3 CHI has complexity $\Theta(n \log n)$.

Cone Based Hypervolume Indicator Efficient Computation Efficiently computing all hypervolume contributions

Lemma

13/20

Computing **all** contributions $\Delta CHI(a, A) = CHI(A) - CHI(A - \{a_i\})$ can be reduced in linear time to computing all contributions to the standard hypervolume.

- Asymptotically optimal algorithm [Emmerich and Fonseca, EMO 2011] with complexity $O(|A| \log |A|)$ can be applied for m = 2, 3.
- Makes efficient implementation of steady state evolutionary algorithms such as SMS-EMOA, Steady-state IBEA, and MOO-CMA possible.

Cone Based Hypervolume Indicator Optimal distribution

14/20

Definition of optimal μ -distribution Definition (Auger, Bader, Brockhoff and Zitzler, FOGA09 For a Pareto front \mathcal{Y} the optimal μ -distribution is defined as: $P_{\mu}^* \in \arg \max_{P \subset \mathcal{Y}, |P| < \mu} \operatorname{HI}(P)$

optimal μ -distribution of HI for $(|y|^{\gamma})^{1/\gamma} \equiv 1, \gamma \in \{\frac{1}{4}, \frac{1}{2}, 1, 2\}$:

Cone Based Hypervolume Indicator Optimal distribution

For the CHI optimal μ -distributions we proved two lemmas:

Lemma

For a compact, connected linear Pareto front in \mathbb{R}^2 the optimal μ -distribution is evenly spaced for $\gamma > 0$.

Lemma

15/20

For a compact and connected Pareto front in \mathbb{R}^2 the optimal μ -distribution is evenly spaced in the Manhattan distance for $\gamma \to 0$.

Both proofs exploit that a point has only a local influence on the CHI. This was also used in similar proofs for the HI in (Auger, Bader, Brockhoff and Zitzler [2009]).

Cone Based Hypervolume Indicator Optimal distribution

16/20

CHI EMOA Results in 2 dimensions

Figure: Left: an obtuse cone, $\gamma = \pi/3$. Center: a Pareto cone, $\gamma = \pi/4$. Right: an acute cone $\gamma = \pi/8$.

CHI-EMOA

17/20

- We construct a simple $(\mu + 1)$ -EMOA by modifying SMS-EMOA.
- Selection criterion:

CHI-EMOA

17/20

- We construct a simple $(\mu + 1)$ -EMOA by modifying SMS-EMOA.
- Selection criterion:
 - non-dominated sorting based on the cone $C \cup C_{Pareto}$. (Strictest order)

CHI-EMOA

17/20

- We construct a simple $(\mu + 1)$ -EMOA by modifying SMS-EMOA.
- Selection criterion:
 - non-dominated sorting based on the cone $C \cup C_{Pareto}$. (Strictest order)
 - CHI contributions replace HI contributions as a secondary selection criterion.

CHI EMOA Results in 2 dimensions

Figure: L: obtuse: $\gamma = \pi/3$. C: $\gamma = \pi/4$. R: acute $\gamma = \pi/8$.

- Generalized Schaffer problems with scalable curvature (Emmerich and Deutz, EMO 2007)
- The number of function evaluations is 50000.
- 10 D test problems.

Results on 3-D superspheres problem

19/20

Summary

20/20

• CHI is a 'natural' hypervolume indicator for cone-orders

Summary

20/20

- CHI is a 'natural' hypervolume indicator for cone-orders
- γ -cones: Efficient construction and computation of CHI

Summary

20/20

- CHI is a 'natural' hypervolume indicator for cone-orders
- γ -cones: Efficient construction and computation of CHI
- CHI allows scaling from knee point focused to evenly spaced via cone-parameter γ

Summary

20/20

- CHI is a 'natural' hypervolume indicator for cone-orders
- γ -cones: Efficient construction and computation of CHI
- • CHI allows scaling from knee point focused to evenly spaced via cone-parameter γ
- CHI EMOA: sort by contributions and strictest order; Search gets more difficult for small γ

Outlook

21/20

• CHI can also be used for curvature based preference formulation*

*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013]

Outlook

'20

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)

*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013]

Outlook

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)
- Future work:

'20

• Additional cases μ -optimal distributions

*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013]

Outlook

- CHI can also be used for curvature based preference formulation*
- Implementations of CHI EMOA and CHI in MATLAB: rodeolib (sourceforge) (by J. Kruisselbrink) and jmetal (by Pradyumn Shukla)
- Future work:
 - Additional cases μ -optimal distributions
 - Algorithm design aspects: can we do better?

*[Pradyumn Kumar Shukla, Michael Emmerich, and André Deutz: A Theoretical Analysis of Curvature Based Preference Models, EMO 2013]

End of our presentation

22/20

Questions?

