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This paper proposes an improved version
of the PESA-II algorithm (called IPESA-II)
to enhance the performance of the
algorithm in terms of

e minimizing the distance from the
resulting solutions to the Pareto
front (i.e., Convergence)

e maintaining the uniform
distribution of the solutions (i.e.,
uniformity)

e maximizing the distribution range
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Figure 3: The final solution set of PESA-Il and IPESA-II
on DTLZ7

IPESA-II

IPESA-II introduces three simple but effective
improvements in the algorithm’s environmental
selection: A N AR

e Maintaining the archive after all individuals in the
internal population have entered it, instead of
doing step by step.

e Extending the distribution range of the solution set
by keeping the boundary individuals.

e Improving the convergence of the solution set by
removing the worst-performed individual (i.e., the
individual that is farthest away from the best
corner of the hyperbox) in the most crowded
hyperbox.
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Table 2: HV comparison of the six EMO algorithms. The
best mean for each problem is highlighted in boldface.
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different distributions.
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significance by a two-tailed t-test.
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e |PESA-Il outperforms NSGA-Il in 11 out of the12
problems, and with statistical significance for 8
problems

e |PESA-Il outperforms SPEA2 in 10 out of the12
problems, and with statistical significance for 7

Figure 1: An example of environmental selection in
PESA-II, where individuals A—E are the current
members in the archive set (the size of the archive set
is five), and individuals X—Z are the candidates to be
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algorithm’s performance

investigation of IPESA-Il on more test problems, such as many-
objective problems

e For the convergence metric GD, IPESA-II .
outperforms PESA-Il in all the 12 problems, and
also with statistical significance

For the uniformity metric SP, IPESA-II
outperforms PESA-Il in 9 out of the 12 problems,
and with statistical significance for 8 problems

e For the extensity metric MS, IPESA-II
outperforms PESA-Il in all the 12 problems, and
with statistical significance for 11 problems

The final archive set is formed by X, B, D, Y, and Z. Obviously, the
obtained archive is not an ideal distribution result. A better
archive is that individual C is preserved and either D or Y is
removed, which, in fact, is the result of the entry of the ®
candidates into the archive in the order of X, Y, and Z. In
addition, if the enter order is Y, Z, and X, both the above results
may occur with equal probability.
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