Experiments on Path Relinking Methods for bi-objective FlowShop problem

Ron-Qiang Zeng, Matthieu Basseur and Jin-Kao Hao. University of Angers, France.

Hybrid Path Relinking algorithm (HPR)

Cooperation of 2 algorithms:

- Hypervolume-Based Multi-Objective Local Search (HBMOLS)
- Multi-Objective Path Relinking (MOPR)

MOPR
Step 1: randomly choose an initial and a guiding solution from a Pareto set approximation
Step 2: generate a path (set of solutions) linking the initial solution to the guiding solution
Step 3: return a subset of the path (for intensification)

- Non-dominated set of solutions
- Initial and guiding solutions
- Solutions of the path
- Subset of the path returned for intensification

- Initial solution
- Pareto set returned (local optima)

Path Relinking Strategies

Initial and guiding solution selection

- Random
- Similar
- Different

Path generation strategies

- Without comparison
- First/Last : First/Last move reducing the distance to the guiding solution Random: Random candidate move
- With comparison : Generate and evaluate all candidate moves
- Pareto-Based: select randomly a non-dominated solution
- Hypervolume-Based: select the solution with the largest hypervolume

Susbset selection

To be returned for intensification

- Without comparison
- All: The entire path
- Middle: The solution located in the « center» of the path
k-middle: A set of solutions located in the middle of the path
- With comparison
- Best: The set of non-dominated solutions of the path
i: Initial solution g : Guiding solution $\bigcirc \quad \circ$: Neighbors
c_{1}, c_{2}, p_{1} : First candidates for path generation p_{i} : Path candidates to be returned

Path generation: iteratively build a path by choosing among candidates c_{i}.

- First: c_{1}
- Last: p_{1}
- Random: p_{1} or p_{2} or p_{3}
- Pareto: p_{1}
- Hypervolume: p_{1}

Subset selection:

- All: p_{1}, p_{2}, p_{3} and p_{4}
- Middle: p_{2} or p_{3}
- k-middle: p_{2} and p_{3}
- Best: p_{1} and p_{3}

Experiments

Permutation biobjective flowshop

- N jobs to schedule on M machines
- Jobs and machines are critical resources
- Jobs are treated on a defined order of machines
- 2 objectives functions : Maximal completion time ($\mathrm{C}_{\text {max }}$) and Total tardiness ($\mathrm{T}_{\text {sum }}$)

Insertion operator: minimal path generation using the corresponding distance measure

Initial solution

Longest common subsequence: 11 jobs distance $=9$ | 14 | 18 | 0 | 1 | 5 | 8 | 3 | 17 | 2 | 15 | 7 | 11 | 16 | 6 | 4 | 9 | 13 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 19 Guiding solution

Resultes
Significant differences obtained between subset selection strategies \rightarrow PR_A: All
PR_B: Best
PR_M: Middle
PR_KM: k-middle

Instance	Algorithm					
	PR_A	PR_B	PR.M	PR_KM	RM	CO
20_05_01_ta001	0.050496	0.076627	0.093801	0.067028	0.000260	0.005152
20-10_01_ta011	0.023355	0.055498	0.048349	0.034595	0.000739	0.027353
20_15_01	0.032433	0.073174	0.070448	0.037654	02330	0.037131
20_20_01_ta021	0.009737	0.034508	0.024761	0.010079	0.000077	0.044826
30_05_01	0.049260	0.081154	0.099705	0.040607	0.011844	0.062030
30_10_01	0.100098	0.200979	0.176367	0.088794	0.041814	0.116553
30_15_01	0.052479	0.096203	0.105293	0.048227	0.028186	0.054050
30-20_01	0.048423	0.064844	0.071167	0.040580	0358	0.05
50_05_01_ta031	0.031220	0.083466	0.090345	0.022628	0.041017	0.056559
50_10_01_ta041	0.103891	0.149919	0.132192	0.079505	0.089703	0.116051
50_15_01	0.131563	0.173639	0.156972	0.091552	0.114880	0.13150
50-20_01_ta051	0.129671	0.176523	0.146388	0.093540	0.11715	0.141695
70_05_01	0.110650	0.191452	0.152058	0.096111	0.084047	0.146741
70_10_01	0.131195	0.177933	0.157369	0.119054	0.146445	0.172327
70-15_01	0.149831	0.174514	0.164179	0.134607	0.156965	0.17876
70_20_01	0.139377	0.183869	0.147617	0.10206	0.135491	0.13769
100_05_01_ta61	0.199309	0.359023	0.236139	0.157834	0.169815	0.175162
100_10_01_ta71	0.093883	0.121682	0.104086	0.071063	0.080287	0.086577
100-15-01	0.187296	0.205879	0.175943	0.128876	0.163312	0.174849
100_20_01_ta81	0.205930	0.22090	0.187275	0.131843	0.1372	0.18

Conclusions and Perspectives

Proposition of a generic approach combining path-relinking and local search in a MO context The use of path relinking offer a good alternative to RM and CO to iterate local searches No significant observation concerning the path generation method The solutions located in the middle of the path should be selected for intensification (k-middle)

Application to other multi-objective optimization problems Evaluate methods selecting the initial and guiding solutions Toward advanced path-relinking algorithms (path between more than two solutions, generate several paths simultaneously...)

