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Motivation
When designing multi-objective evolutionary al-
gorithms (MOEAs), there are two main types of ap-
proaches that are normally used as selection mech-
anisms:

1. those that incorporate the concept of Pareto
optimality, and

2. those that do not use Pareto dominance to se-
lect individuals.

However, the use of Pareto-based selection has

several limitations. From them, its poor scalabil-
ity is, perhaps, the most remarkable. In this work,
we are interested in the maximin fitness function

(belonging to the type (2)).

Maximin Fitness Function (MFF)
The maximin fitness function of individual i is de-
fined as:

fitnessi = maxj �=i(mink(f
i
k − f j

k)) (1)

where the min is taken over all the objectives, and
the max is taken over all the individuals in the pop-
ulation, except for the same individual i. From
eq. (1), we can say the following:

1. If fitnessi > 0 then i is a dominated individ-
ual,

2. If fitnessi < 0 then i is a non-dominated in-
dividual.

3. Finally, if fitnessi = 0 then i is a weakly-
dominated individual.

This scheme is computationally efficient (its com-
plexity is linear with respect to the number of ob-
jectives).

Some properties of MFF
1. MFF penalizes clustering of non-dominated

individuals.

2. The maximin fitness of dominated individ-
uals is a metric of the distance to the non-

dominated front.
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The maximin fitness of a dominated individual is
always controlled by a non-dominated individual
and is indifferent to clustering. The maximin fit-
ness of a non-dominated individual may be con-
trolled by a dominated or a non-dominated indi-
vidual.

Disadvantage 1
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Is it better to prefer weakly

dominated individuals

than dominated individ-

uals? In the Figure, solu-

tion A is a weakly domi-
nated individual and so-
lution E is a dominated
individual. To guaran-
tee convergence to the
Pareto optimal set, we
must choose individual
E. Otherwise, it is possi-
ble that the MOEA con-
verges to a weak Pareto
optimal solution. Prob-
lem ZDT2 is an example.

Solution (Checking similarity)
We show that it is not
good to prefer weakly
dominated individuals
or individuals which are
close to being weakly
dominated. Then, we
proposed the follow-
ing constraint: Any in-
dividual that we want
to select must not
be similar (in objec-
tive space) to another
(selected) individual.
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Disadvantage 2
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MFF penalizes individ-
uals B, C and D because
they are close from each
other. However, we can
not know which of the
three is the best individ-
ual to form part of the
next generation.

Solution (Maximin - Clustering)
To select S individu-
als, we choose the best
S individuals with re-
spect to their maximin
fitness, and use them
as centers of their clus-
ters. Then, we pro-
ceed to do clustering.
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We apply this technique only
when more than S individuals

are non-dominated.Proposed selection mechanism
Input : X (Current population) and S (number of

individuals to choose).
Output: Y (individuals selected).

MaximinFitnessFunction(X);
if The number of nondominated individuals is greater

to S then

Y ← Maximin-Clustering(X , S);
else

Y ← Maximin-Constraint(X , S);

Returns Y ;

MFF vs Modified MFF
We propose three operators based on MFF. The
first uses MFF. The second uses MFF when applies
Maximin-Constraint and uses modified MFF when
applies Maximin-Clustering. The third uses modi-
fied MFF. According to the results, the three oper-
ators are competitive to solve multi-objective opti-
mization problems having both low dimensional-
ity (two or three) and high dimensionality (more
than three) in objective function space.
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Results
We designed a MOEA using a simulated binary
crossover (SBX) and a polynomial mutation oper-
ator (PM) combined with the described selection
operators, giving rise to our MC-MOEA approach.
According to the hypervolume, MC-MOEAs ob-
tained competitive results with respect to both SMS-
EMOA and App-SMS-EMOA. Regarding the addi-
tive epsilon indicator, we only compared with re-

spect to App-SMS-EMOA and the results indicate
that MC-MOEAs outperformed App-SMS-EMOA in
most cases. MC-MOEAs have two advantage: First,

they are consistent when we increase the number

of objectives. And second, they are computation-

ally efficients. Thus, we argue that the proposed

MC-MOEAs can be a good alternative for dealing

with many-objective optimization problems.

Set of problems Objectives NSGA-II SMS-EMOA App-SMS-EMOA MC-MOEAs
ZDT 2 � 1s 5s − 10s 5s − 10s � 1s

DTLZ 3 2s − 4s 4568s − 8468s 231s − 307s 3s − 9s
DTLZ 4 3s − 4s 14448s − 14650s 378s − 423s 5s − 12s
DTLZ 5 4s − 5s 15423s − 18000s 472s − 499s 9s − 14s
DTLZ 6 5s − 6s - 531s − 584s 8s − 16s
DTLZ 7 5 − 6s - 536s − 583s 9 − 18s
DTLZ 8 5s − 7s - 525s − 583 9s − 16s

Running time required per run, s = seconds.

Modified MFF
The author of the MFF proposed the following
modified MFF:

fitnessi = maxj �=i,j∈P (mink(f
i
k − f j

k)) (2)

where P is the set of non-dominated individuals. Us-
ing eq. (2), we only penalize clustering between
non-dominated individuals.


