An Alternative Preference Relation to Deal with Many-Objective Optimization Problems

Antonio López¹, Carlos A. Coello Coello², Akira Oyama¹ and Kozo Fujii¹

¹Japan Aerospace Exploration Agency (JAXA) ²Center for Research and Advances Studies (CINVESTAV)

March 20th, 2013

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

Difficulties of Many-objective Problems (1/2)

Number of nondominated vectors quickly increases with the number of objectives: (2^k - 2)/(2^k).

- Number of dominance resistant solutions (DRSs) increases with the objectives:
 - Solutions with good values in most objectives, but a poor value in at least one objective.

- 1. We propose an alternative preference relation to deal with Many-objective problems.
 - □ Good convergence without sacrificing distribution.
 - □ Suitable for parallel implementation.
 - □ Easy to use it just by replacing the Pareto dominance relation.
- 2. We also study the effect of DRSs in the widely used DTLZ test problem suite and also in some WFG problems.

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

Augmented Chebyshev Achievement Function

Definition (Wierzbicki 1980, Ehrgott 2005)

The augmented Chebyshev achievement function is defined by

$$s(\mathbf{z} \,|\, \mathbf{z}^{\text{ref}}) = \max_{i=1,\ldots,k} \{\lambda_i(z_i - z_i^{\text{ref}})\}$$

- The reference point: aspiration levels for each objective.
- The weight vector, λ , normalize the objective values.

Augmented Chebyshev Achievement Function

Definition (Wierzbicki 1980, Ehrgott 2005)

The augmented Chebyshev achievement function is defined by

$$s(\mathbf{z} | \mathbf{z}^{\text{ref}}) = \max_{i=1,\dots,k} \{\lambda_i(z_i - z_i^{\text{ref}})\} + \rho \sum_{i=1}^k \lambda_i(z_i - z_i^{\text{ref}}),$$

- The reference point: aspiration levels for each objective.
- The weight vector, λ, normalize the objective values.
- The second term helps to avoid weakly Pareto optimal solutions.

Augmented Chebyshev Achievement Function

Definition (Wierzbicki 1980, Ehrgott 2005)

The augmented Chebyshev achievement function is defined by

$$s(\mathbf{z} | \mathbf{z}^{\text{ref}}) = \max_{i=1,\dots,k} \{\lambda_i(z_i - z_i^{\text{ref}})\} + \rho \sum_{i=1}^k \lambda_i(z_i - z_i^{\text{ref}}),$$

- The reference point: aspiration levels for each objective.
- The weight vector, λ , normalize the objective values.
- The second term helps to avoid weakly Pareto optimal solutions.
- Any solution of the Pareto front can be generated by s(z | z^{ref}).

The Chebyshev Preference Relation

- Combines Pareto dominance + Chebyshev function.
- Defines a Region of Interest (Rol) around a reference point.

- Outside Rol: solutions compared with Chebyshev value.
- In Rol: solutions compared using Pareto dominance.
- Solutions in Rol dominate solutions outside Rol.

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

Approximating the Entire Pareto Front

To approximate the entire Pareto front we used as reference point the **approximation of the ideal point** maintained by the Chebyshev relation.

- Use a stringent criterion for solutions far from the Pareto front for guiding the solutions towards the ideal point,
- and Pareto dominance for solutions near the Pareto front for covering the entire Pareto front.

In order to improve convergence...

 Instead of the Pareto dominance, another secondary preference relation can be used instead.

■ Here we used a preference relation based on the binary *e*-indicator.

Replacing Pareto Dominance by ϵ -indicator Relation

Epsilon Indicator, I_{ε}

$$I_{\varepsilon}(\mathbf{z}^2,\mathbf{z}^1) = \min_{\varepsilon \in \mathbb{R}} \{ z_i^2 \leqslant \varepsilon + z_i^1 \ \text{ for } i = 1, \dots, k \}$$

"Extent" by which a solution dominates another one:

$$\begin{array}{c|c} \varepsilon < 0 & \varepsilon > 0 \\ z^2 \prec z^1 \text{ dominates by} & \varepsilon = 0 & \text{needs to dominate } z^1 \end{array}$$

• Using a fitness function, $F_{\varepsilon}(z)$, based on the ε -indicator we can define a preference relation:

Epsilon relation, R_{ϵ}

A solution \mathbf{z}^1 "dominates" \mathbf{z}^2 wrt the relation R_ε if and only if: $\mathsf{F}_\varepsilon(\mathbf{z}^1) > \mathsf{F}_\varepsilon(\mathbf{z}^2).$

Replacing Pareto Dominance by ϵ -indicator Relation

Two examples of fitness functions (P is the current population):

Maximim fitness function (Balling 2003)

$$\mathsf{F}^{\mathsf{min}}_{\varepsilon}(\mathbf{z}^1) = \min_{\mathbf{z}^2 \in \mathsf{P} \setminus \{\mathbf{z}^1\}} \mathrm{I}_{\varepsilon}(\mathbf{z}^2, \mathbf{z}^1)$$

Sum of I_{ϵ} values (Zitzler and Künzli 2004)

$$\mathsf{F}^{\mathsf{sum}}_{\varepsilon}(\mathbf{z}^1) = \sum_{\mathbf{z}^2 \in \mathsf{P} \setminus \{\mathbf{z}^1\}} - \exp\left(-I_{\varepsilon}(\{\mathbf{z}^2\}, \{\mathbf{z}^1\})\right)$$

$$\begin{array}{c|c} \varepsilon < 0 & \varepsilon > 0 \\ z^2 \prec z^1 \text{ dominates by } & \varepsilon = 0 & \text{ needs to dominate } z^1 \end{array}$$

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

Algorithms and Parameter Settings

NSGA2 used as baseline optimizer:

- Pareto dominance.
- \Box Chebyshev relation with I_{ϵ}^{sum} .
- □ Chebyshev relation with I_{ϵ}^{\min} .
- Test Problems: DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ7, WGF2, WGF6
 - □ Objectives were varied from 3 to 14 objectives.
 - □ Number of distance-related variables: 20 (5 for DTLZ1).
 - \Box Number of position-related variables: k-1.
- Performance Indicators:
 - Generational Distance (GD), Inverted Generational Distance (IGD), Epsilon Indicator.

Generational Distance

GD values for DTLZ1 and WFG6 using from 3 to 14 objectives.

Remarkable improvement

Marginal improvement

Generational Distance

GD values for DTLZ1 and WFG6 using from 3 to 14 objectives.

Remarkable improvement

Marginal improvement

Does Chebyshev approach performs bad or NSGA2 performs well?

Inverted Generational Distance

MOP	MOEA		3	6	10	14
DTLZ2	NSGA2	mean	0.0151	0.0239	0.0469	0.0443
		std	0.0010	0.0030	0.0113	0.0104
	$NSGA2\text{-}I^{sum}_{\varepsilon}$	mean	0.0079	0.0132	0.0183	0.0331
		std	0.0025	0.0047	0.0091	0.0185
	$NSGA2\text{-}\mathrm{I}^{min}_{\varepsilon}$	mean	0.0087	0.0121	0.0165	0.0220
		std	0.0027	0.0028	0.0070	0.0099
DTLZ7	NSGA2	mean	0.0896	0.3300	12.7540	38.0094
		std	0.2740	0.0830	4.8488	9.5044
	$NSGA2\text{-}I^{sum}_{\varepsilon}$	mean	0.0138	0.2226	4.9511	9.1685
		std	0.0029	0.0083	0.3701	0.3093
	$NSGA2\text{-}\mathrm{I}^{min}_{\varepsilon}$	mean	0.0150	0.2229	4.9978	9.2333
		std	0.0061	0.0073	0.2918	0.1852
WFG6	NSGA2	mean	0.0075	0.0120	0.0187	0.0271
		std	0.0034	0.0049	0.0052	0.0071
	$NSGA2\text{-}\mathrm{I}^{sum}_{\varepsilon}$	mean	0.0073	0.0091	0.0141	0.0232
		std	0.0024	0.0020	0.0038	0.0240
	$NSGA2\text{-}\mathrm{I}^{min}_{\varepsilon}$	mean	0.0075	0.0087	0.0132	0.0209
		std	0.0015	0.0025	0.0050	0.0085

Analysis of Dominance Resistant Solutions

DRSs in DTLZ3 using NSGA2 (objs. values are divided by 20)

20 000 random solutions for DTLZ2

Maximum Tradeoff to Detect DRSs

Classification of DRSs

Maximum tradeoff: $T^{\max}(\mathbf{z}) = \frac{\max(z_i)}{\min(z_i)+1}$ for all i = 1, ..., k.

- DRSs have a very large T^{max}. Small value in some objective and large value in other objective.
- Not all solutions far from the Pareto front obtain a large T^{max}.

Maximum Tradeoff Results

Maximum tradeoff distribution in DTLZ1 DRSs: $T^{max} >> 1$

March 20th, 2013 A. López, C.A. Coello, A. Oyama, K. Fujii

Maximum Tradeoff Results

21/23

The Chebyshev Preference Relation

Approximating the Entire Pareto Front

Experimental Results

Conclusions

Conclusions

- The Chebyshev relation + ε-indicator is also useful to deal with Many-Objective problems.
 - NSGA-II's convergence was improved without sacrificing distribution.
- Comparing solutions using the achievement function and ε-indicator helps to eliminate DRSs.
- The main source of difficulty of DTLZ problems is the presence of dominance resistant solutions.
- The difficulty of some WFG problems is not considerably increased with the number of objectives.

Future Work:

 Compare the Chebyshev relation against optimization techniques that have shown good scalability in Many-objective problems. E.g., MOEA/D or ε-MOEA.