

7th International Conference on Evolutionary Multi-Criterion Optimization

Hypervolume-based Multi-Objective Reinforcement Learning

Kristof Van Moffaert **Madalina M. Drugan** Ann Nowé

Vrije Universiteit Brussel

Overview

- Single-objective reinforcement learning (RL)
- Multi-objective RL
 - State of the art
- Hypervolume-based RL
- Experiments
- Conclusions

Reinforcement Learning

- Origin in psychology
- Learning from interaction
- Senses and acts upon its environment
- Chosen action influences the state of the environment, which determines the reward

Reinforcement Learning

- Environment?
 - Markov Decision Process (MDP) contains:
 - I. A set of possible states S
 - 2. A set of possible actions A
 - 3. A real-valued reward function R(s,a)
 - 4. A transition function $T : S \times A \longrightarrow Prob(S)$
- Goal?
 - Maximize long-term reward (**R**)

Environment

s(t+1)

r(t+1)

a(t)

- Learn policy
 - Determine (optimal) action to take in each state

Reinforcement Learning

- How?
 - Q-values store estimated quality of state-action pair, i.e.
 Q(s,a)
 - Update rule adapts Q-values into the direction of the discounted future reward

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha_t(s_t, a_t)}_{\text{learning rate}} \times \left[\underbrace{\underbrace{R_{t+1}}_{\text{reward discount factor}}^{\text{learned value}} \underbrace{\max_{a_{t+1}} Q(s_{t+1}, a_{t+1})}_{\text{max future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}} \right]$$

Single-objective Q-learning

Multiple objectives

• Multi-objective reinforcement learning (MORL)

• Goal:

State of the art MORL

- Scalarization approaches
 - I. Linear scalarization MORL
 - Weighted-sum [Vamplew, 2011]
 - 2. Non-linear scalarization MORL
 - Chebyshev function [Van Moffaert, 2013]

Problems are similar to problems in MO

- Defining weights a-priori
- Performance heavily depends on weights used
- Not all solutions in Pareto front discovered

Alternative solution?

Indicator-based search!

Hypervolume unary indicator

 A unary quality indicator *I* assigns a real number to a Pareto set approx.

- Measures the hypervolume between r and s_1 , s_2 and s_3
- Used in EMO algorithms:
 - MO-CMA-ES, HypE, SMS-EMOA, ...

Algorithm 4 Hypervolume-based Q-learning algorithm 1: Initialize Q(s, a, o) arbitrarily 2: for each episode T do list of previously visited Q-vectors Initialize $s, l = \{\}$ 3: 4: repeat 5:Choose a from s using policy derived from Q (e.g. ϵ -greedy HBAS(s, l)) Take action a and observe state $s' \in S$, reward vector $\vec{r} \in \mathbb{R}$ 6: 7: $\vec{o} \leftarrow \{Q(s, a, o_1), \dots, Q(s, a, o_m)\}$ \triangleright Add Q-values of selected action a to l 8: Add \vec{o} to l $max_{a'} \leftarrow \text{greedy HBAS}(s', l)$ \triangleright Get greedy action in s' based on new l 9: 10: \triangleright Update Q-values for each objective 11: for each objective *o* do $Q(s, a, o) \leftarrow Q(s, a, o) + \alpha [\vec{r}(s, a, o) + \gamma Q(s', \max_{a'}, o) - Q(s, a, o)]$ 12:end for 13: 14: $s \leftarrow s'$ 15: \triangleright Proceed to next state 16: **until** *s* is terminal 17: end for

Algorithm 4 Hypervolume-based Q-learning algorithm

Algorithm 3 Greedy Hypervolume-based Action Selection HBAS(s, l)

1: $volumes \leftarrow \{\}$ > The list collects hv contributions for each action 2: for each action $a_i \in A$ of state s do 3: $\vec{o} \leftarrow \{Q(s, a_i, o_1), \dots, Q(s, a_i, o_m)\}$ 4: $hv \leftarrow calculate_hv(l + \vec{o})$ > Compute hv contribution of a_i to l5: Append hv to volumes6: end for

7: return $\operatorname{argmax}_{a} volumes \qquad \triangleright$ Retrieve the action with the maximal contribution

Algorithm 4 Hypervolume-based Q-learning algorithm

Algorithm 4 Hypervolume-based Q-learning algorithm

Algorithm 3 Greedy Hypervolume-based Action Selection, HBAS(s, l)

1: $volumes \leftarrow \{\}$ \triangleright The list collects hv contributions for each action

2: for each action $a_i \in A$ of state s do

3:
$$\vec{o} \leftarrow \{Q(s, a_i, o_1), \dots, Q(s, a_i, o_m)\}$$

4:
$$hv \leftarrow calculate_hv(l+\vec{o})$$

 \triangleright Compute hv contribution of a_i to l

5: Append hv to volumes

6: **end for**

7: return $\operatorname{argmax}_{a} volumes \qquad \triangleright$ Retrieve the action with the maximal contribution

Benchmark I

• Benchmark instances [Vamplew, 2011]

Deep Sea Treasure world

- Minimize time and maximize treasure value
- Transformed into full maximization problem
 - Time objective x I
- IO Pareto optimal policies
- Represent non-convex Pareto front

Learning curve

Benchmark 2

MO Mountain Car world

- ► 3-objective
- minimize time, number of reversal and acceleration actions
- Transformed into maximization problem
- 470 elements in Pareto front

Pareto front

Quality indicator comparison

		Linear	Chebyshev	HB-MORL
Inverted Generational distance	DS	0.128	0.0342	0.0371
	MC	0.012	0.010	0.005
Generalized spread	DS	$3.14 \mathrm{e}^{-16}$	0.743	0.226
	MC	0.683	0.808	0.701
Generational distance	DS	0	0	0
	MC	0.0427	0.013824	0.013817
Hypervolume	DS	762	959.26	1040.2
	MC	15727946	23028392	23984880
Cardinality	DS	2	8	5
	MC	15	38	37

Conclusions

- We have combined EMO principles with RL to design a hybrid MORL algorithm
- HB-MORL uses the hypervolume measure to guide the action selection
- Results
 - Linear scalarization learner is not generally applicable
 - Chebyshev learns more spread results, but not robust all the time
 - Scalarization methods and their performance depend on weight tuples used
 - HB-MORL focuses on policies that maximize HV and finds them nearly always

7th International Conference on Evolutionary Multi-Criterion Optimization

Thank you

Kristof Van Moffaert **Madalina M. Drugan** Ann Nowé

Vrije Universiteit Brussel