Force-based Cooperative Search Directions in Evolutionary Multi-objective Optimization

Bilel Derbel
Univ. Lille 1Dimo Brockhoff
INRIA Lille – Nord EuropeArnaud Liefooghe
Univ. Lille 1INRIA Lille – Nord EuropeINRIA Lille – Nord EuropeUniv. Lille 1

March 21, 2013 EMO'2013 in Sheffield, UK

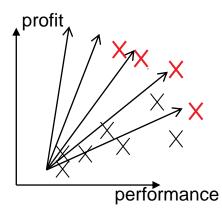
Multiobjective Optimization Scenario

Three main approaches in EMO:

- classical dominance-based algorithms: NSGA-II, SPEA2, ...
- indicator-based algorithms: IBEA, AGE, HypE, ...
- scalarization-based algorithms: MSOPS, MOEA/D, ...

Scalarization approaches:

- solve several scalarized problems simultaneously
- #scalarizations = #solutions desired



Problems:

- defining search directions a priori is difficult
- given a direction in objective space, finding good scalarizations in terms of a direction in decision space is non-trivial

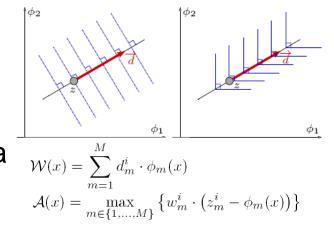
at least for comb. problems

Goal: adapting search directions cooperatively during search

Main Idea of Force-Based Scalarization

 μ scalarization functions = $\mu x (1+\lambda)$ -EA

adaptation of search directions inspired by Newton's laws of motion, especially F = -ma

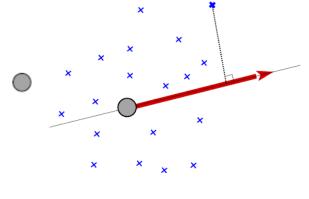


in each iteration:

compute force of each particle based on positions of others

e.g.
$$\overrightarrow{f}_{j}^{i} = \frac{z^{i} - z^{j}}{\|z^{i} - z^{j}\|^{\alpha}}$$

 $\overrightarrow{d}^{i} = \sum_{j \in \{1, \dots, n\} \setminus \{i\}} \overrightarrow{f}_{j}^{i}$



- **2** generate λ offspring from each particle
- Output of the section of the sect

Nothing is totally new:

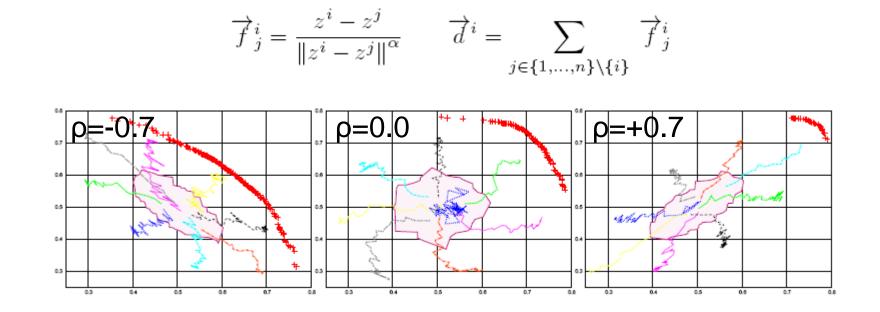
- adapting weights in MOEA/D, e.g. [Jiang et al. 2011]
 - assumption on estimated Pareto front: $\sum_{i=1}^{M} f_i^p = 1$
- force-based approach in PSO and other algorithms [see paper]
 - but typically in decision space

Here: a force-based algorithm adapting search directions in objective space during search

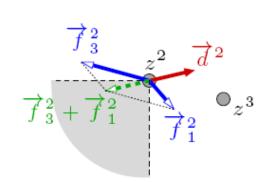
- quite simple
- easy to implement
- in principle independent of search space
- (quite) efficient on pMNK landscapes (compared with a (μ+λ)-SMS-EMOA)

The Naive Idea

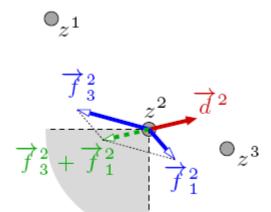
Simple repelling forces do not allow to optimize all particles:



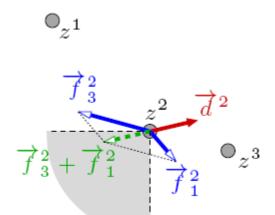
...because it only maximizes the distances among the particles



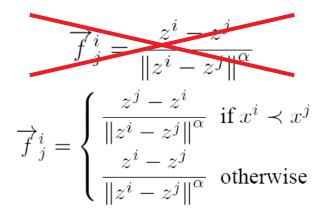
 \bigcirc_{z^1}



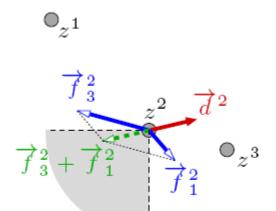
no backwards directions



no backwards directions

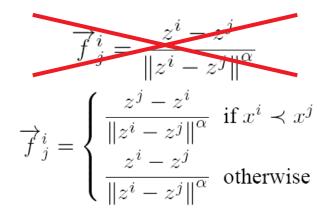


dominating particles attract

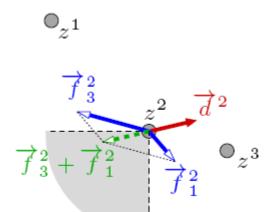


no backwards directions

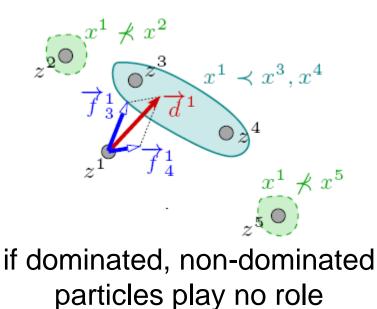


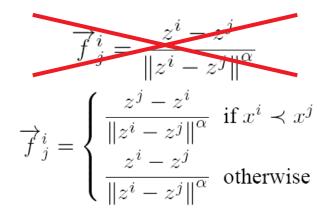


dominating particles attract

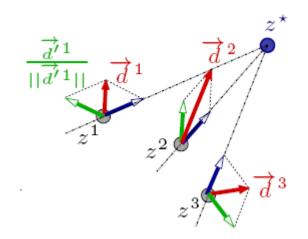


no backwards directions

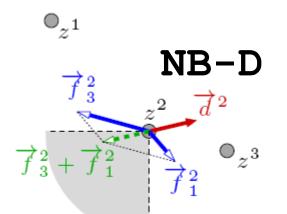




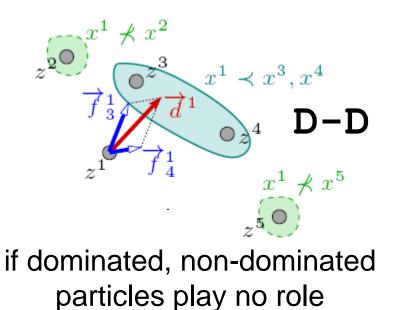
dominating particles attract

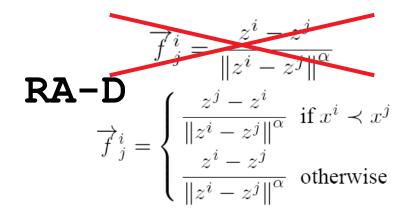


blackhole attracts as well

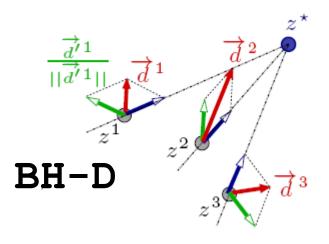


no backwards directions



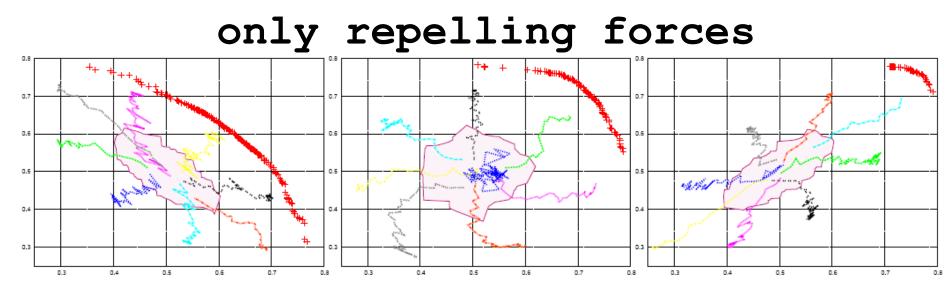


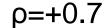
dominating particles attract

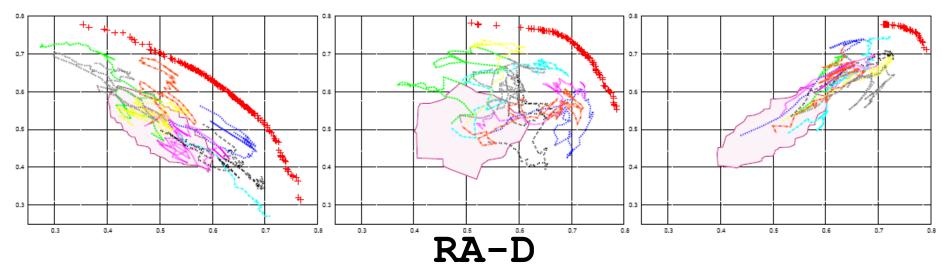


blackhole attracts as well

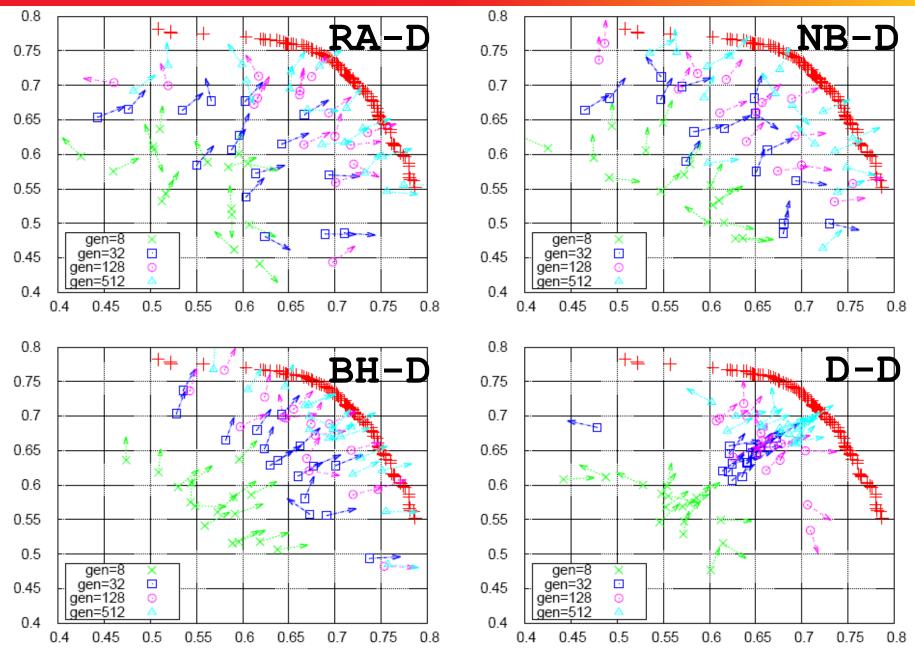
Repelling and Attracting Forces







Qualitative Differences Between the Strategies



© Dimo Brockhoff, INRIA Lille – Nord Europe

Force-based Cooperative Search..., Sheffield, UK, March 21, 2013

Quantitative Comparison

5 strategies: RA-D, BH-D, D-D, NB-D and I-D

weighted sum vs. Chebyshev scalarization

$(\mu + \lambda)$ -SMS-EMOA with one-shot selection

comparing all non-dominated solutions found

4.058	
BH-D 1 0 1 290 24 0 181 24 1 192 24 0 118 24 1 166 24 0 109 24 1 155 24 0.104 24 1.146 26 0.096 24	F
BH-D 1 1 1 24 0.102 24 1.146 26 0.097 24	FT .
BH-D 1 2 ρ MNK with $\rho = -0.7, 0.0, +0.7$ 24 0.102 24 1.146 26 0.096 24	F]]
$\boxed{D-D \mid 0 \mid 0} \text{Preserved of } P = 0.7, 0.0, +0.7$	जा
D-D 0 1 100.052 10 1.059 10 0.043 10	川
D-D 0 2 1.215 5 0.149 7 1.125 4 0.076 9 1.086 5 0.058 11 1.065 8 0.046 9 1.053 7 0.037 9	1
D-D 1 0 1.230 16 0.158 17 19 0.055 20	7
D-D 1 1 1 1.235 14 0.159 18 different generations (function)	
D-D 1 2 1.234 13 0.156 13 different generations/funevals 19 0.053 18	3
NB-D 0 0 1.205 2 0.145 3 0 0 0.027 0	П
NB-D 0 1 1.209 3 0.146 3 1.120 2 0.071 2 1.079 0 0.049 0 1.057 0 0.036 0 1.045 0 0.029 2	
NB-D 0 2 1.203 2 0.144 2 1.115 1 0.071 2 1.0	
NB-D 1 0 1.220 11 0.154 13 1.132 11 0.083 13 1.0	a t a <i>x</i>
$\frac{110}{NB-D} \frac{1}{1} \frac{1}{1} \frac{1222}{12} \frac{11}{0.156} \frac{13}{13} \frac{1132}{1.134} \frac{13}{13} \frac{0.084}{0.084} \frac{13}{13} \frac{1.0}{1.0}$ hypervolume and ϵ -indic	ator
NB-D 1 2 1.227 13 0.155 13 1.134 13 0.085 14 1.1	
I-D 0 0 1.350 27 0.212 27 1.288 28 0.166 27 1.235 27 0.156 27 1.178 27 0.129 27 1.128 23 0.097 24	F
I-D 0 1 1.350 27 0.211 27 1.281 27 0.165 27 1.240 29 0.155 27 1.180 27 0.129 27 1.126 23 0.097 24	₽ ∏
I-D 0 2 1.200 1 0.140 1 1.111 1 0.067 1 1.085 6 0.053 7 1.075 10 0.050 10 1.067 11 0.047 11	i 🗌
I-D 1 0 1.348 27 0.212 27 1.276 27 0.165 27 1.229 27 0.154 27 1.178 27 0.133 29 1.149 26 0.106 29)
I-D 1 1 1 1.349 27 0.212 27 1.275 27 0.165 27 1.229 27 0.154 27 1.176 27 0.133 29 1.150 26 0.106 29	
I-D 1 2 1.193 1 0.143 2 1.129 10 0.071 2 1.105 18 0.057 11 1.095 22 0.052 11 1.085 22 0.049 13	3
SMS 1.151 0 0.070 0 1.063 0 0.035 0 1.103 12 0.048 0 1.120 23 0.053 11 1.130 23 0.053 18	\$

© Dimo Brockhoff, INRIA Lille – Nord Europe

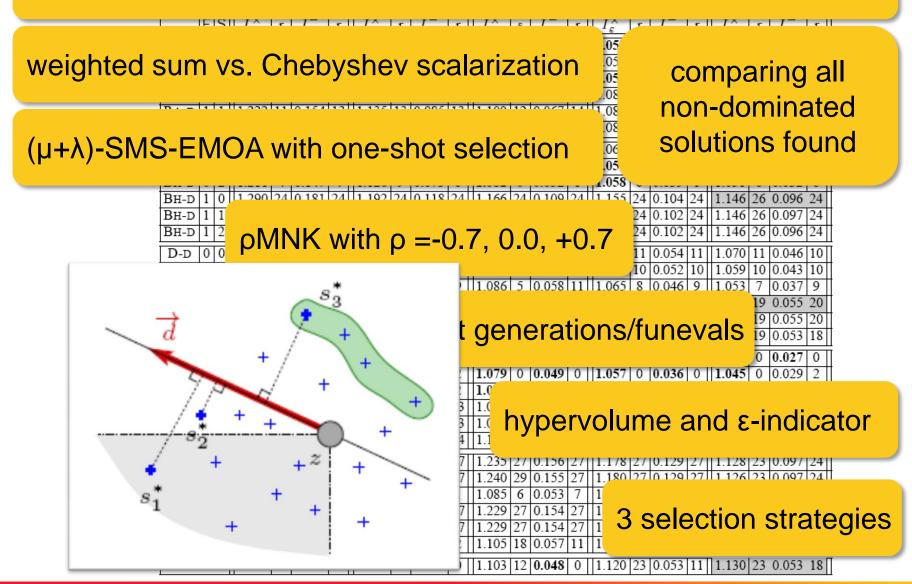
Force-based Cooperative Search..., Sheffield, UK, March 21, 2013

.05 .05 .05 .05

.08 .08 .06

Qualitative Comparison

5 strategies: RA-D, BH-D, D-D, NB-D and I-D



Influence of the Neighborhood Selection Strategy

much less than other algorithm design choices

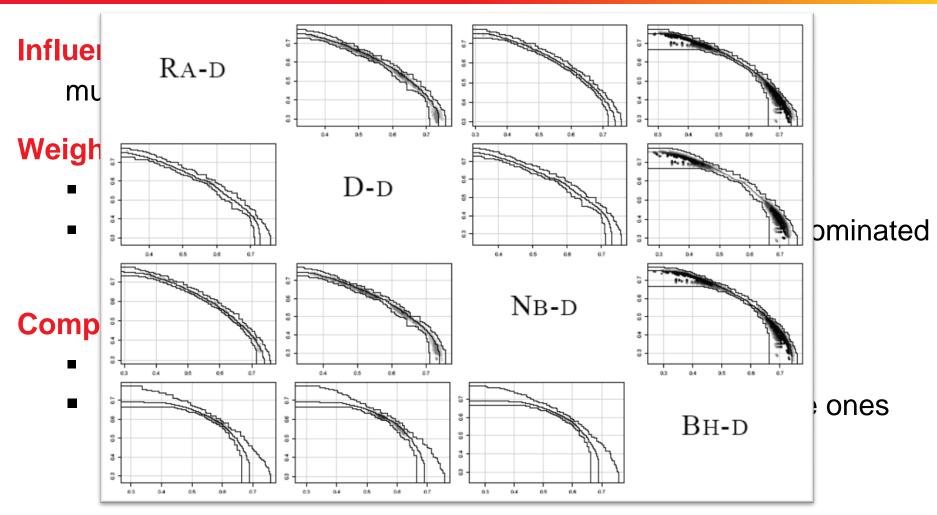
Weighted Sum vs. Achievement Scalarizing Function

- WS consistently better for pMNK
- Chebyshev/ASF results in more local optima as non-dominated solutions cannot be visited (but with WS can)

Comparison between the Five Scalarizing Strategies

- adapation consistently better than fixed directions
- D-D strategy almost always worse than other adaptive ones

Main Conclusions



BH-D focuses on middle, RA-D more on extremes

First Conclusion:

use RA-D (or BH-D if middle is desired and ideal point known)

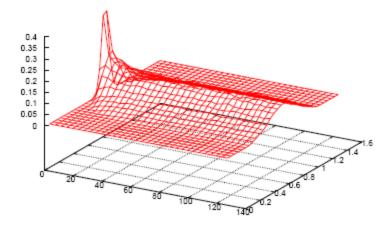
© Dimo Brockhoff, INRIA Lille – Nord Europe

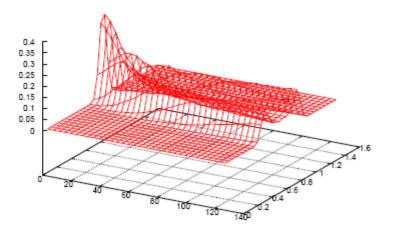
Force-based Cooperative Search..., Sheffield, UK, March 21, 2013

Main Conclusions II

Distribution of the Population Over the Objective Space

quickly stable

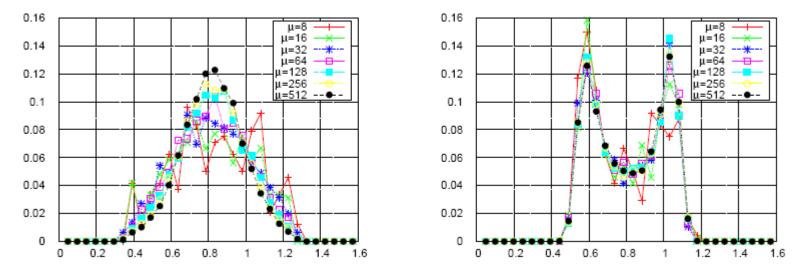




Main Conclusions II

Distribution of the Population Over the Objective Space

- quickly stable
- smoother and with wider range for weighted sum



Comparison with $(\mu + \lambda)$ -SMS-EMOA with oneshot selection

- SMS-EMOA better on ρ=0.0 and ρ=+0.7 and in early optimization for ρ=-0.7
- force-based approaches only better with larger budgets
 (> 50µ funevals) on the highly correlated instance

Conclusions

Force-based Cooperative Search Directions in EMO

- first ideas of adapting the search directions in objective space for scalarization approaches
- lots of experimental results on the different strategies on the pMNK problem

Results

- force-based approach works in principle
- when compared wrt non-dominated archive slightly better than SMS-EMOA only for not too small budgets on ρMNK with ρ=-0.7
- interesting insights into weighted sum vs. Chebyshev

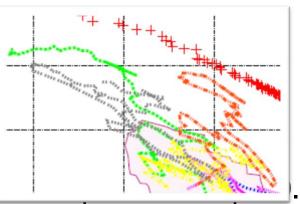
Conclusions

Force-based Cooperative Search Directions in EMO

- first ideas of adapting the search directions in objective space for scalarization approaches
- lots of experimental results on the different strategies on the pMNK problem

Results

- force-based approach works in principle
- when compared wrt non-dominated arcl SMS-EMOA only for not too small budg



- interesting insights into weighted sum vs. Chebyshev
- Final Conclusion: more investigations necessary
 - other problems (started for 0-1-knapsack)
 - comparison with other algorithms
 - influence of scalarizing functions ("landscapes")

[Jiang et al. 2011] Siwei Jiang, Zhihua Cai, Jie Zhang, Yew-Soon Ong: *Multiobjective Optimization by Decomposition with Paretoadaptive Weight Vectors*. In 7th International Conference on Natural Computation. 2011.