

Automated Innovization using Dimensionally-Aware Genetic Programming (GP)

Extension: Generalization of $\psi(\phi(\mathbf{x}))$ using Parse Tree Representation

Old Representation

 $\psi(\mathbf{x}) = \prod \phi_j(\mathbf{x})^{a_j b_j}$

Parse Tree Representation

SmallGP Implementation

- **Initialization: Grow Method**
- Size Safe Subtree Crossover
- **Point Mutation**
- Maximum Tree Length (MAXLEN)
- Maximum Tree Depth (MAXDEPTH)
- **Dimensional Awareness**
- Physically meaningful design principles
- Implemented as a constraint on each physical dimension

Results on Engineering Design Problems

Des	sign Principles for Truss	Proble	Design Principles for Welded-Beam Problem						Design Principles for Metal-Cutting Problem								
Notation	Design Principle (DP) $\psi(\mathbf{x}) = constant$	SignificanceBasic DimensionsMassLengthTime				$\begin{array}{ll} \text{Minimize} & f_1(\boldsymbol{x}) = C = 1.10471h^2l + 0.04811tb(14.0+l),\\ \text{Minimize} & f_2(\boldsymbol{x}) = D = \frac{2.1952}{t^3b}, \end{array}$						Minimize $f_1(\mathbf{x}) = T_p(\mathbf{x}) = 0.15 + 219912 \left(\frac{1 + \frac{0.20}{T(\mathbf{x})}}{MRR(\mathbf{x})}\right) + 0.05$ min Minimize $f_2(\mathbf{x}) = \xi(\mathbf{x}) = \frac{219912}{MRR(\mathbf{x})T(\mathbf{x})} \times 100\%$					
DP1 DP2 DP3	y = constant $S \times V = constant$ $S \times x_1 = constant$	86.60% 87.00% 85.00%	$ \begin{array}{c c} 0.0 \\ 1.0 \\ 1.0 \end{array} $	$1.0 \\ 2.0 \\ 1.0$	0.0 -2.0 -2.0	Subject to $\begin{cases} \tau(\boldsymbol{x}) \le 13,600 \text{ psi}; \sigma(\boldsymbol{x}) \le 125 \le h, b \le 5.0 \text{ in.}; \end{cases}$	$(x) \le 30,000 \text{ p}$ $(0.1 \le l, t \le 10)$	osi; $b \ge h$; 0.0 in.	$P_c(x)$:	$\geq 6,000$	$\left. \left. \right\} \right\} S_{1}$	ubject to	$\begin{cases} P(\mathbf{x}) \le \eta P^{max}; F_c(\mathbf{x}) \le F_c(\mathbf$	$\sum_{n=1}^{max}; R(\mathbf{x}) \le 0.55$		ev; 0.5	$\leq a \leq 6 \mathrm{mm}$
DP4 DP5 DP6	S imes V imes y = constant $(V imes y)/x_2 = constant$ $(V imes y)/x_1 = constant$	87.00% 86.20% 88.20%	$ \begin{array}{c} 1.0 \\ 0.0 \\ 0.0 \end{array} $	$3.0 \\ 2.0 \\ 2.0$	-2.0 0.0 0.0	where $\tau(x) = \sqrt{(\tau')^2 + (\tau'')^2}$ $\tau' = \frac{6,000}{(51)}, \tau'' = 0$	$)^{2} + (l\tau'\tau'')/\sqrt{\frac{6,000(14+0.5l)}{2}}$	$\sqrt{0.25(l^2+h^2)}$	$+(h+t)^{2})$	$\overline{t)^2)},$		where T P	$\begin{aligned} \mathbf{(x)} &= \frac{5.48 \times 10^9}{v^{3.46} f^{0.696} a^{0.460}}, \qquad N\\ \mathbf{(x)} &= \frac{v F_c(\mathbf{x})}{r^{0.000}}, \qquad F_c(\mathbf{x}) = \frac{9}{2} \end{aligned}$	$MRR(\mathbf{x}) = 1$ $5.56 \times 10^3 f^{0.917}$	$\frac{1000vf}{a^{1.10}}$.	a R($(x) = \frac{125f^2}{125f^2}$
DP7 DP8 DP9	$V/x_1 = constant$ $V/(S \times x_1 \times x_2) = constant$ $V^2/(x_1 \times x_2) = constant$	86.40% 87.20% 87.40%	$ \begin{array}{c c} 0.0 \\ -1.0 \\ 0.0 \end{array} $	$1.0 \\ 0.0 \\ 2.0$	$0.0 \\ 2.0 \\ 0.0$	$\sigma(\mathbf{x}) = \frac{504,000}{t^2 b},$ $P_c(\mathbf{x}) = 64,746.022($	1 - 0.02823465	$t)tb^3.$)~)]			Notation	$\frac{1}{\psi(\mathbf{x}) = constant}$	v ^{0.286} Significance	Bas Mass	sic Dime	r_n ensions Time Life
DP10 DP11 DP12	$y/(S \times x_1) = constant$ $x_2/x_1 = constant$ $(S \times V \times x_2 \times u)/x_1 = constant$	88.00% 83.80% 88.00%	-1.0 0.0 1.0	0.0 0.0 3.0	2.0 0.0 -2.0	Notation Design Principle (DP) $\psi(\mathbf{x}) = constant$	Significance	Basi Mass L	c Dime ength	$\frac{\text{ensions}}{\text{Time}}$	ost	DP1 DP2 DP3	$\overline{\frac{v/(f^2 \times \xi) = constant}{(a \times v)/f = constant}}$ $\frac{v/(f^2 \times T_p \times \xi) = constant}{v/(f^2 \times T_p \times \xi) = constant}$	$72.70\% \\ 74.60\% \\ 73.40\%$	0.0 0.0 0.0	-1.0 1.0 -1.0	-1.0 -1.0 -1.0 0.0 -2.0 -1.0
DP13 DP14 DP15	$\frac{(D \times V \times x_2 \times y)}{V_{x_2} = constant}$ $\frac{(V/x_2 = constant)}{(S \times V^2 \times y)/x_1 = constant}$	86.80% 87.20%	0.0 1.0	1.0 4.0	-2.0 0.0 -2.0	$\begin{array}{ll} \text{DP1} & (D+t) = constant\\ \text{DP2} & t = constant\\ \text{DP3} & D \times b = constant \end{array}$	$\begin{array}{c} 95.20\% \\ 95.60\% \\ 95.00\% \end{array}$	$ \begin{array}{c c} 0.0 \\ 0.0 \\ 0.0 \end{array} $	1.0 1.0 2.0	$\begin{array}{c c} 0.0 & 0\\ 0.0 & 0\\ 0.0 & 0\\ \end{array}$.0 .0 .0	DP4 DP5 DP6	f = constant $a/(f \times T_p) = constant$ $(a^{5.5} \times f \times \xi)/T_p = constant$	$72.90\% \\ 72.90\% \\ 77.50\%$	$\begin{array}{c c} 0.0 \\ 0.0 \\ 0.0 \end{array}$	$1.0 \\ 0.0 \\ 6.5$	0.0 0.0 -1.0 0.0 -1.0 1.0
DP15 DP16 DP17 DP10	$ \begin{aligned} &(x_2 \times y)/x_1 = constant \\ &x_2/(S \times x_1^2) = constant \\ &V^2/(x_1 \times x_2 \times y) = constant \\ &(S \to V^2)/(x_1 \times x_2 \times y) = constant \end{aligned} $	86.40% 86.40% 91.40%	-1.0 0.0	-1.0 1.0	0.0 2.0 0.0	DP4 $D \times b \times t = constant$ DP5 $\sigma \times b = constant$ DP6 $\sigma \times b \times t = constant$	95.60% 94.80% 95.60%	$\begin{array}{c c} 0.0 \\ 1.0 \\ 1.0 \end{array}$	3.0 0.0	$\begin{array}{c c} 0.0 & 0 \\ -2.0 & 0 \\ -2.0 & 0 \end{array}$.0 .0 0	DP7 DP8 DP9	$(a \times T_p \times v)/f = constant$ $a^{5.5} \times T_p \times \xi = constant$ $a \times T_p \times v = constant$	74.20% 82.60% 74.10%	0.0 0.0 0.0	$1.0 \\ 5.5 \\ 2.0$	$\begin{array}{c c} 0.0 & 0.0 \\ 1.0 & 1.0 \\ 0.0 & 0.0 \end{array}$
DP18 DP19 DP20	$ (S \times V^{-})/x_{2} = constant S \times x_{2} \times y = constant (x_{2} \times y)/(S \times x_{1}^{2}) = constant $	87.20% 87.00% 86.80%	1.0 1.0 -1.0	3.0 2.0 0.0	-2.0 -2.0 2.0	$\begin{array}{c c} DP7 \\ DP7 \\ DP8 \end{array} \begin{array}{c} D / \sigma = constant \\ D / (\sigma \times t) = constant \end{array}$	95.60% 95.60% 95.60%	-1.0 -1.0 -1.0	2.0 1.0	$ \begin{array}{c c} -2.0 & 0 \\ 2.0 & 0 \\ 2.0 & 0 \end{array} $.0 .0 .0	DP10 DP11 DP12	$(a^{2} \times T_{p} \times \xi)/v = constant$ $(a^{2} \times \xi)/v = constant$ $a^{5.5} \times f \times \xi = constant$	$74.40\% \\ 76.00\% \\ 76.80\%$	$\begin{array}{c c} 0.0 \\ 0.0 \\ 0.0 \end{array}$	$1.0 \\ 1.0 \\ 6.5$	$\begin{array}{ccc} 2.0 & 1.0 \\ 1.0 & 1.0 \\ 0.0 & 1.0 \end{array}$
0.08	10 0.0419 (5 points) 0.0423 (8 points)	× 10 ⁴				10	0.01					6000 5000		10 9			
0.07	0.0444 (406 points) 8 0.0463 (7 points) 7 0.0696 (6 points) 7					9.95 • 9.999 (478 points)	0.008					4000	 82.61 (739 points) 128.32 (11 points) 154.81 (6 points) 	8			

Cluster Plot and Mapping of Clusters for DP16

Parse Tree for DP16

- Mass, Length and Time are chosen as basic dimensions
- All design principles agree with analytical relationships above

Cluster Plot and Mapping of Clusters for DP2

Observations

- A user-defined basic dimension (Cost) has been introduced
- **Redundant design principles can be seen** (For example DP2, DP3 and DP4)
- DP1 is a false design principle, arising due to difference in magnitudes of D and t

Parse Tree for DP6

- **User-defined dimesion** (Life) is introduced
- All design principles agree with those obtained in a previous study