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Purpose of Instrument Recognition

� Management of large music collections

� Music recommendation

� Analysis of genre and style characteristics
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� Note / vocals correction

� Music transcription



Supervised Classification Chain
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Reasons for Feature Selection

� Classifier performance suffers from 

too many irrelevant features

� The same base feature set for different tasks

� Optimization of feature extraction/processing/classification
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• Runtime demands decrease

• Storage space demands decrease

� Reduced risk of model overfitting

� Understanding of classification category properties



Multi-Objective Feature Selection

� Feature selection:

• :  original feature set

• :  selected feature set

• :  indices of selected features
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• :  indices of selected features

• : target variable (category)

• : relevance function

� Multi-objective feature selection:



Optimization Algorithm

� SMS-EMOA [N. Beume, B. Naujoks, M. Emmerich: SMS-EMOA: Multiobjective

Selection Based on Dominated Hypervolume. European Journal of Operational 

Research 181(3):1653–1669, 2007]

� Asymmetric mutation
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� Asymmetric mutation

• : bit flip prob.

• : step size

• : bit vector value

• : prob. of switching 0 to 1
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Experiment Data Sets 1/2

� Binary categorization tasks

• Piano 

• Guitars (acoustic / electric) 

• Wind (flute / trumpet)

• Strings (viola / violine / cello)

� Instrument samples from McGill, RWC and Iowa databases

acoustic guitar
piano
trumpet
electric guitar

EMO 2013, Sheffield, UK 1122.03.2013

� Instrument samples from McGill, RWC and Iowa databases

• Different playing styles

• Approximately the same loudness

• 3000 chords mixed randomly (3 or 4 tones)

piano
piano
piano

violin
viola
cello



Experiment Data Sets 2/2

� Experiment set E: 2000 chords

� Holdout set H: 1000 chords

� 10-fold cross-validation

• Training set T: 200 chords

• Optimization set O: 1800 chords
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• Optimization set O: 1800 chords



Experiments - Features

� Features

• 353 block characteristics from

[M. Eichhoff, C. Weihs: Musical Instrument Recognition by High-Level 

Features. Proc. GFKL 2010, 373–381, 2012]

• 795 short-term signal characteristics extracted by AMUSE 

[I. Vatolkin, W. Theimer, M. Botteck: AMUSE (Advanced MUSic Explorer) – A 

Multitool Framework for Music Data Analysis, Proc. ISMIR, 33–38, 2012]
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Multitool Framework for Music Data Analysis, Proc. ISMIR, 33–38, 2012]

• 102 constant-Q  features

[J. C. Brown: Computer Identification of Musical Instruments Using Pattern 

Recognition with Cepstral Coefficients as Features. J. Acoust. Soc. Am., 105(3), 

1933–1941, 1999]



Experiments – Classification Methods

� Decision tree C4.5

� Random forest

� Naive Bayes

� Support vector machine with linear kernel
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� Support vector machine with linear kernel



� Specific feature selection

� Generic feature selection

Experiments – Optimization Metrics

• :  labeled and predicted relationships

• L: number of chords

• F: number of folds

• C: number of classification tasks
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Optimization Performance on Holdout Set
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Summary

� Feature selection increases hypervolume on holdout set

� Task specific features often the best

� Generic features perform quite well

• For Guitar at worst
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• For Strings at best

� Specific features from other tasks are less suited



Current and Further Work

� Instruments as high-level features for genre and style 

prediction [PhD, to appear]

� More instruments

� Playing styles analysis (e.g. open vs. fretted strings)

� Generic feature selection for further task groups

� Other multi-objective scenarios [I. Vatolkin, M. Preuß, G. Rudolph: 
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� Other multi-objective scenarios [I. Vatolkin, M. Preuß, G. Rudolph: 

Multi-Objective Feature Selection in Music Genre and Style Recognition Tasks. 

Proc. GECCO, 411–418, 2011]

• Training set size vs. classification quality

• Model stability vs. classification quality

� Nested resampling with early stopping [J. Loughrey, P. Cunningham. 

Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the 

Worse It Gets., Proc. SGAI, 33–43,2004]


