MAS5050

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Mathematical Methods for Statistics

RESTRICTED OPEN BOOK EXAMINATION Candidates may bring to the examination lecture notes and associated lecture material (including set textbooks) plus a calculator that conforms to University regulations. Candidates should attempt **ALL** questions. The paper will be marked out of 80 and the allocation of marks is shown in brackets.

1 Verify that

$$10^4 \sum_{n=0}^{\infty} \left(\frac{1}{101}\right)^n = \sum_{n=1}^{100} 2n.$$

(10 marks)

- 2 Write down the first four terms of the Taylor series expansion of $f(x) = e^{3x-1}$ about the point x = 0. (10 marks)
- **3** Find and classify *all* the critical points of the function

$$f(x,y) = x^3 + 2y^3 - 3x - 6y.$$

(10 marks)

4 Find:

(i)

 $\int x \sin(x^2) \mathrm{dx}$

(ii)

 $\int_{2}^{10} \frac{1}{x^2 - x} \mathrm{dx}$

(10 marks)

MAS5050

Turn Over

2013-2014

Spring Semester

Let f(x,y) = x + y - 1 and $D \subset \mathbb{R}^2$ be the region bounded by the triangle with $\mathbf{5}$ vertices (0,0), (1,0), (0,1). Find

$$\iint_D f(x,y) dA.$$

(10 marks)

6 Use Gaussian elimination to solve the following system of equations:

(10 marks)

 $\mathbf{7}$ Let

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Show that $\{\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}\}$ is a basis for \mathbb{R}^3 .

Let a, b be real numbers. Find 8

Let
$$a, b$$
 be real numbers. Find

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix}^{2014}$$
Hint: It is easy to take powers of diagonal matrices.

End of Question Paper

(10 marks)

(10 marks)