On real analysis

Q1 Consider the following sequences of real numbers:

$$e^{-n}$$
 $\sin\left(\frac{n\pi}{2}\right)$ $\frac{(-1)^n}{n}$ $\sum_{i=1}^n 2^{-i}$ $\sum_{i=1}^n \frac{1}{i}$

Three of these sequences converge, as $n \to \infty$. Which three? What are the limits in these cases?

- **Q2** (a) Let (a_n) be a sequence of real numbers, and suppose that $a_n \to a$ and $a_n \to b$ for some $a, b \in \mathbb{R}$. Prove that a = b.
 - (b) Give an example of two sequences (a_n) and (b_n) , which converge to the same limit, and for which $a_n < b_n$ for all n.
- **Q3** Consider the following functions, which are defined : $\mathbb{R} \to \mathbb{R}$.

$$f(x) = |x| \qquad g(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{if } x \ge 0 \end{cases} \qquad h(x) = xe^{-x^2}$$

Two of these function are continuous (on \mathbb{R}). Which two? Why not the other? One of these functions is differentiable (on \mathbb{R}). Which one? Why not the others?

- **Q4** Let $p \in \mathbb{R}$. Show that

$$f(p) = \int_1^\infty x^p \, dx = \begin{cases} \frac{1}{p+1} & \text{if } p < -1, \\ +\infty & \text{if } p \ge -1. \end{cases}$$

Sketch the graph of f(p).

On probability and stochastic processes

- **Q5** Let Y be an exponential random variable with parameter $\lambda > 0$. Calculate $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$. Hence, show that $\operatorname{Var}(X) = \frac{1}{\lambda^2}$.
- **Q6** Let (X_n) be a Markov chain with state space \mathbb{N} , and transition probabilities given by $p_{i,i+1} = \frac{1}{2}$ and $p_{i,1} = \frac{1}{2}$ (with all other transitions having zero probability).
 - (a) Draw a graph of the transitions that (X_n) may make, and annotate the edges of your graph with the transition probabilities.
 - (b) Is (X_n) transient or recurrent?
 - (c) Find the stationary distribution of (X_n) . Do you recognize this distribution?
- **Q7** Let (X_n) be a sequence of random variables, with distribution

$$\mathbb{P}[X_n = n^2] = \frac{1}{n}$$
 $\mathbb{P}[X_n = 0] = 1 - \frac{1}{n}.$

Show that $\mathbb{E}[X_n] \to \infty$ as $n \to \infty$, but that $\mathbb{P}[|X_n| > \epsilon] \to 0$ for any $\epsilon > 0$.

Q8 I roll a (fair, six-sided) dice three times. What is the probability that I roll the same number more than once? What about if I roll the dice $n \in \mathbb{N}$ times?