On real analysis

Q1 Consider the following sequences of real numbers:

$$
e^{-n} \quad \sin \left(\frac{n \pi}{2}\right) \quad \frac{(-1)^{n}}{n} \quad \sum_{i=1}^{n} 2^{-i} \quad \sum_{i=1}^{n} \frac{1}{i}
$$

Three of these sequences converge, as $n \rightarrow \infty$. Which three? What are the limits in these cases?
Q2 (a) Let $\left(a_{n}\right)$ be a sequence of real numbers, and suppose that $a_{n} \rightarrow a$ and $a_{n} \rightarrow b$ for some $a, b \in \mathbb{R}$. Prove that $a=b$.
(b) Give an example of two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$, which converge to the same limit, and for which $a_{n}<b_{n}$ for all n.

Q3 Consider the following functions, which are defined : $\mathbb{R} \rightarrow \mathbb{R}$.

$$
f(x)=|x| \quad g(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{array} \quad h(x)=x e^{-x^{2}}\right.
$$

Two of these function are continuous (on \mathbb{R}). Which two? Why not the other?
One of these functions is differentiable (on \mathbb{R}). Which one? Why not the others?
Q4 Let $p \in \mathbb{R}$. Show that

$$
f(p)=\int_{1}^{\infty} x^{p} d x= \begin{cases}\frac{1}{p+1} & \text { if } p<-1 \\ +\infty & \text { if } p \geq-1\end{cases}
$$

Sketch the graph of $f(p)$.

On probability and stochastic processes

Q5 Let Y be an exponential random variable with parameter $\lambda>0$. Calculate $\mathbb{E}[X]$ and $\mathbb{E}\left[X^{2}\right]$. Hence, show that $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$.

Q6 Let $\left(X_{n}\right)$ be a Markov chain with state space \mathbb{N}, and transition probabilities given by $p_{i, i+1}=\frac{1}{2}$ and $p_{i, 1}=\frac{1}{2}$ (with all other transitions having zero probability).
(a) Draw a graph of the transitions that $\left(X_{n}\right)$ may make, and annotate the edges of your graph with the transition probabilities.
(b) Is $\left(X_{n}\right)$ transient or recurrent?
(c) Find the stationary distribution of $\left(X_{n}\right)$. Do you recognize this distribution?

Q7 Let $\left(X_{n}\right)$ be a sequence of random variables, with distribution

$$
\mathbb{P}\left[X_{n}=n^{2}\right]=\frac{1}{n} \quad \mathbb{P}\left[X_{n}=0\right]=1-\frac{1}{n}
$$

Show that $\mathbb{E}\left[X_{n}\right] \rightarrow \infty$ as $n \rightarrow \infty$, but that $\mathbb{P}\left[\left|X_{n}\right|>\epsilon\right] \rightarrow 0$ for any $\epsilon>0$.
Q8 I roll a (fair, six-sided) dice three times. What is the probability that I roll the same number more than once? What about if I roll the dice $n \in \mathbb{N}$ times?

