
RoboChart & RoboSim
Modelling Robots and Collections

Alvaro Miyazawa

Department of Computer Science
University of York

January 23, 2019

Outline

Introduction
RoboChart
RoboSim
Collection modelling
Robotic platform modelling

1 42

Introduction

Motivation

1st phase: Abstract model

state machine

1st phase: Abstract model

state machine

controller

code

hardware
simulation

discrete
environment
simulation

2nd phase: Simulation

controller

code

hardware
simulation

discrete
environment
simulation

2nd phase: Simulation

low-level

code robot environment

3rd phase: Implementation

2 42

Motivation

State machines are often used to record, illustrate and
explain
Usage is informal
Potential:
I Testing
I Code generation
I Veri�cation

3 42

Objective

Graphical notations
Formal semantics
Specialised, but comprehensive
Supporting simulation, analysis and veri�cation

4 42

Approach

RoboChart
Models

Requirements

ARGoS

RoboTool

C++

PRISM Storm

Reactive Modules
Formalism

CSP and
timed-CSP

Qualitative Results

Simulation

Quantitative
Results

5 42

RoboChart

RoboChart

Standard state machines + time + probability
Formal semantics: untimed, timed and probabilistic
Well-formedness conditions
Tool support:
I Modelling
I Validation
I Code generation: semantics and simulation

6 42

Module

Models a single Robot
1 Robotic Platform
1+ Controllers
Communication
I Synchronous
I Asynchronous

Robotic Platform may provide shared variables

7 42

Robotic Platform

Records assumptions about the robot hardware
I which events the robot provides
I which operations the robot supports
I which variables are available

Independent of controller and state-machines
Single point of interaction with robot

8 42

Controller

Models a speci�c behaviour
Contains:
I Behavioural state-machines
I Operations
I Variables
I Events

Supports multiple behavioural state-machines
Communication between state-machines is synchronous

9 42

State-Machine

Main behavioural speci�cation construct
Models both operations and behaviours
Simple, Composite and Final states
Initial and junction nodes
Non-interlevel transitions
Actions: entry, during, exit, transition
Local variables

10 42

Types and Action Language

Types based on Z Mathematical Toolkit
Action language:
I Assignment
I Event signalling
I Operation call
I Sequential composition

Control statements modelled using junctions and transitions

11 42

Semantics

Formalised in CSP
Coverage:
I State-Machines
I Controllers
I Robotic Platforms
I Modules

12 42

Semantics: Overview

Module = CSP Process
I Parallel composition of controllers
I Connections de�ne synchronisation sets
I Asynchronous communication modelled through bu�ers
I Robotic platform incorporated via renaming

Controller = CSP Process
I Parallel composition of state-machines
I Connections de�ne synchronisation sets
I External interactions via controller established via renaming

13 42

Semantics: Overview

State-Machine = CSP Process
I Parallel composition of states
I Transitions are part of the source states
I Junctions are part of the incoming transition
I Initial nodes and �nal states are part of the parent state
I States interact with each other to enter and exit
I States synchronise on transition triggers to support
top-down interruption

Action language
I Operation call = Process call
I Event signalling = Communication on event channel
I Assignment = Communication on setter channel

State components
I Isolated in memory process due to sharing
I Help avoid polling for transition conditions

14 42

RoboTool

Eclipse plugins
Textual editor developed using Xtext
Graphical editor developed using Sirius
Code generator for the semantics
Code generator for simulation
Validation rules

15 42

RoboTool

16 42

RoboTool

Case studies:
I Alpha Algorithm (Single Robot and Collection);
I Chemical Detector;
I Autonomous Chemical Detector;
I Foraging;
I Transport; etc.

Generated semantics used for veri�cation using FDR4
FDR4 compression functions highly e�ective

17 42

https://www.cs.york.ac.uk/circus/RoboCalc/case_studies/

Current developments

Generation of simulations
Generation of probabilistic semantics
Generation of sematics for Isabelle/UTP

18 42

RoboSim

Based on RoboChart
Explicit cyclic pattern for simulation
Related to RoboChart models via re�nement

19 42

Collection Modelling

Motivation

RoboChart
The focus of RoboChart is the modelling, analysis and simulation
of individual robots.

Other notations
Support in other notations tends to be concrete.

20 42

Motivation

RoboChart
The focus of RoboChart is the modelling, analysis and simulation
of individual robots.

Other notations
Support in other notations tends to be concrete.

20 42

Objective

Support modelling, analysis and simulation of collections
Reuse RoboChart models and semantics

21 42

Extensions

new implicit type ID and module constant id;
robotic platform events are broadcast and directional;
broadcast events have implicit ID parameters: to and from;
input events can restrict from and record its value;
output events can restrict to parameter; and
new diagram describes group of collections and how they
communicate.

22 42

Models

23 42

Semantics of collections

(9 i : {1..N} • AggregationRobot(i))
J{|report.in, report.out,ack.in,ack.out|}K9 i : {1..N} • 9 j : ({1..N} \ {i}) • Bu�er(〈〉, report, i, report, j)9

9 i : {1..N} • 9 j : ({1..N} \ {i}) • Bu�er(〈〉,ack, i,ack, j)

24 42

Alpha Algorithm

25 42

Alpha Algorithm (old)

26 42

Alpha Algorithm (new)

27 42

Events and their semantics

ev![|pred|]!e
semantics ev.out.id?to : {x | x← ID,pred}!e−→ Skip
ev[| v = from | pred |]?u
semantics ev.in?from : {x | x← ID,pred}.id?y −→

set v!from−→ set u!y −→ Skip

28 42

Current status
Partial support for modelling
Code generation for semantics
Validation

Ongoing work
Complete modelling support
Extend simulation generation

Future work
Optimise veri�cation
Investigate data abstraction and induction with FDR4
Investigate theorem proving with Isabelle/UTP

29 42

Current status
Partial support for modelling
Code generation for semantics
Validation

Ongoing work
Complete modelling support
Extend simulation generation

Future work
Optimise veri�cation
Investigate data abstraction and induction with FDR4
Investigate theorem proving with Isabelle/UTP

29 42

Current status
Partial support for modelling
Code generation for semantics
Validation

Ongoing work
Complete modelling support
Extend simulation generation

Future work
Optimise veri�cation
Investigate data abstraction and induction with FDR4
Investigate theorem proving with Isabelle/UTP

29 42

Robotic platform modelling

Motivation

RoboChart focuses on modelling controllers
Robotic platform is abstracted as a set of events, variables
and operations
Existing XML-based notations: URDF, SDF, Collada
I not convenient for modelling
I not abstract enough
I no facilities for modelling behaviour

30 42

Objectives

Restructure and refactor SDF
Provide graphical representation
Extend with facilities to
I model behaviours
I map between operations, events and variables to sensors
and actuators

Formal semantics integrated with RoboSim
Linked to RoboChart via abstraction
Generate both SDF models and platform dependent
simulation code

31 42

Simple Model

32 42

Simple Model

33 42

Simple Model

34 42

Simple Model

35 42

Simple Model

36 42

Semantics

Inputs
distance : T →R

Outputs
las, ras : T →R

Behaviour Revolute

v = R× b× das/K + K × das
J× as′ + b× as = K × i
L× i′ + R× i = v − K × as

Behaviour IR

voltage = 4× e−0.028×distance

37 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)

38 42

Semantics

Behaviours

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)until (voltage > 3);
obstacle−→ X

)
M = var l, r : R • l, r := 0,0;

µ X •

 Step(l, r) 4 move.ls.as−→

{l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

39 42

Semantics

Behaviours

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)until (voltage > 3);
obstacle−→ X

)

M = var l, r : R • l, r := 0,0;

µ X •

 Step(l, r) 4 move.ls.as−→

{l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

39 42

Semantics

Behaviours

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r) = µ X •
(
(A init ldas, rdas = l, r)until (voltage > 3);
obstacle−→ X

)
M = var l, r : R • l, r := 0,0;

µ X •

 Step(l, r) 4 move.ls.as−→

{l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

39 42

Semantics

A: behaviours of the platform model.
Step: behaviours in A until input events are true.
M: behaviours in Step interrupted by variables
assignments, operation calls and output events

40 42

Conclusions

RoboChart supports modelling including time and
probability
Formal semantics speci�ed in CSP
Tool support for modelling, veri�cation and simulation
RoboSim models can be
I derived from RoboChart models
I related to RoboChart models formally

Partial support for modelling collections and robotic
platforms

41 42

Current work

Modelling support for platform modelling
Case studies in platform modelling
Generation of
I SDF models
I simulation code
I formal semantics

Integration with RoboChart models via abstraction

42 / 42

References

Ana Cavalcanti, Alvaro Miyazawa, Augusto Sampaio, Wei Li, Pedro
Ribeiro, and Jon Timmis.
Modelling and verification for swarm robotics.
In Carlo A. Furia and Kirsten Winter, editors, Integrated Formal
Methods, pages 1–19, Cham, 2018. Springer International
Publishing.
DOI: 10.1007/978-3-319-98938-9 1.
Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon
Timmis, and Jim Woodcock.
Robochart: modelling and verification of the functional
behaviour of robotic applications.
Software and Systems Modeling, 2019.
DOI: 10.1007/s10270-018-00710-z (To Appear).

	Introduction
	RoboChart
	Collection Modelling
	Robotic platform modelling
	Appendix

