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Motivation

State machines are often used to record, illustrate and
explain
Usage is informal
Potential:
I Testing
I Code generation
I Veri�cation
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Objective

Graphical notations
Formal semantics
Specialised, but comprehensive
Supporting simulation, analysis and veri�cation
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RoboChart



RoboChart

Standard state machines + time + probability
Formal semantics: untimed, timed and probabilistic
Well-formedness conditions
Tool support:
I Modelling
I Validation
I Code generation: semantics and simulation
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Module

Models a single Robot
1 Robotic Platform
1+ Controllers
Communication
I Synchronous
I Asynchronous

Robotic Platform may provide shared variables
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Robotic Platform

Records assumptions about the robot hardware
I which events the robot provides
I which operations the robot supports
I which variables are available

Independent of controller and state-machines
Single point of interaction with robot
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Controller

Models a speci�c behaviour
Contains:
I Behavioural state-machines
I Operations
I Variables
I Events

Supports multiple behavioural state-machines
Communication between state-machines is synchronous
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State-Machine

Main behavioural speci�cation construct
Models both operations and behaviours
Simple, Composite and Final states
Initial and junction nodes
Non-interlevel transitions
Actions: entry, during, exit, transition
Local variables
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Types and Action Language

Types based on Z Mathematical Toolkit
Action language:
I Assignment
I Event signalling
I Operation call
I Sequential composition

Control statements modelled using junctions and transitions
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Semantics

Formalised in CSP
Coverage:
I State-Machines
I Controllers
I Robotic Platforms
I Modules
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Semantics: Overview

Module = CSP Process
I Parallel composition of controllers
I Connections de�ne synchronisation sets
I Asynchronous communication modelled through bu�ers
I Robotic platform incorporated via renaming

Controller = CSP Process
I Parallel composition of state-machines
I Connections de�ne synchronisation sets
I External interactions via controller established via renaming
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Semantics: Overview

State-Machine = CSP Process
I Parallel composition of states
I Transitions are part of the source states
I Junctions are part of the incoming transition
I Initial nodes and �nal states are part of the parent state
I States interact with each other to enter and exit
I States synchronise on transition triggers to support
top-down interruption

Action language
I Operation call = Process call
I Event signalling = Communication on event channel
I Assignment = Communication on setter channel

State components
I Isolated in memory process due to sharing
I Help avoid polling for transition conditions
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RoboTool

Eclipse plugins
Textual editor developed using Xtext
Graphical editor developed using Sirius
Code generator for the semantics
Code generator for simulation
Validation rules
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RoboTool
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RoboTool

Case studies:
I Alpha Algorithm (Single Robot and Collection);
I Chemical Detector;
I Autonomous Chemical Detector;
I Foraging;
I Transport; etc.

Generated semantics used for veri�cation using FDR4
FDR4 compression functions highly e�ective
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Current developments

Generation of simulations
Generation of probabilistic semantics
Generation of sematics for Isabelle/UTP
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RoboSim

Based on RoboChart
Explicit cyclic pattern for simulation
Related to RoboChart models via re�nement
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Collection Modelling



Motivation

RoboChart
The focus of RoboChart is the modelling, analysis and simulation
of individual robots.

Other notations
Support in other notations tends to be concrete.
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Objective

Support modelling, analysis and simulation of collections
Reuse RoboChart models and semantics
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Extensions

new implicit type ID and module constant id;
robotic platform events are broadcast and directional;
broadcast events have implicit ID parameters: to and from;
input events can restrict from and record its value;
output events can restrict to parameter; and
new diagram describes group of collections and how they
communicate.
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Models
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Semantics of collections

(9 i : {1..N} • AggregationRobot(i))
J{|report.in, report.out,ack.in,ack.out|}K9 i : {1..N} • 9 j : ({1..N} \ {i}) • Bu�er(〈〉, report, i, report, j)9

9 i : {1..N} • 9 j : ({1..N} \ {i}) • Bu�er(〈〉,ack, i,ack, j)
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Alpha Algorithm
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Alpha Algorithm (old)
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Alpha Algorithm (new)
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Events and their semantics

ev![|pred|]!e
semantics ev.out.id?to : {x | x← ID,pred}!e−→ Skip
ev[| v = from | pred |]?u
semantics ev.in?from : {x | x← ID,pred}.id?y −→

set v!from−→ set u!y −→ Skip
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Current status
Partial support for modelling
Code generation for semantics
Validation

Ongoing work
Complete modelling support
Extend simulation generation

Future work
Optimise veri�cation
Investigate data abstraction and induction with FDR4
Investigate theorem proving with Isabelle/UTP
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Robotic platform modelling



Motivation

RoboChart focuses on modelling controllers
Robotic platform is abstracted as a set of events, variables
and operations
Existing XML-based notations: URDF, SDF, Collada
I not convenient for modelling
I not abstract enough
I no facilities for modelling behaviour
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Objectives

Restructure and refactor SDF
Provide graphical representation
Extend with facilities to
I model behaviours
I map between operations, events and variables to sensors
and actuators

Formal semantics integrated with RoboSim
Linked to RoboChart via abstraction
Generate both SDF models and platform dependent
simulation code
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Simple Model
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Simple Model
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Simple Model
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Simple Model
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Simple Model
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Semantics

Inputs
distance : T →R

Outputs
las, ras : T →R

Behaviour Revolute

v = R× b× das/K + K × das
J× as′ + b× as = K × i
L× i′ + R× i = v − K × as

Behaviour IR

voltage = 4× e−0.028×distance
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Simple Model

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r ) = µ X •
(
(A init ldas, rdas = l, r)
until (voltage > 3); obstacle−→ X

)
M = var l, r : R • l, r := 0,0; µ X • Step(l, r) 4(

move.ls.as−→ {l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X

)
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Semantics

Behaviours

A = (Revolute[[das := ldas, . . .]] | Revolute[[das := rdas, . . .]] | IR)

Step(l , r ) = µ X •
(
(A init ldas, rdas = l, r)until (voltage > 3);
obstacle−→ X

)
M = var l, r : R • l, r := 0,0;

µ X •

 Step(l, r) 4 move.ls.as−→

{l, r} :
[
true, ls = rd× (l+ r)/2 ∧

as = rd× (l− r)/aL

]
; X
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Semantics

A: behaviours of the platform model.
Step: behaviours in A until input events are true.
M: behaviours in Step interrupted by variables
assignments, operation calls and output events
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Conclusions

RoboChart supports modelling including time and
probability
Formal semantics speci�ed in CSP
Tool support for modelling, veri�cation and simulation
RoboSim models can be
I derived from RoboChart models
I related to RoboChart models formally

Partial support for modelling collections and robotic
platforms
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Current work

Modelling support for platform modelling
Case studies in platform modelling
Generation of
I SDF models
I simulation code
I formal semantics

Integration with RoboChart models via abstraction
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