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Teamwork 1n Self-Organized Robot Colonies
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Abstract— Swarm robotics draws inspiration from decentral-
ized self-organizing biological systems in general and from the
collective behavior of social insects in particular. In social insect
colonies, many tasks are performed by higher order group or
team entities, whose task-solving capacities transcend those of
the individual participants. In this paper, we investigate the
emergence of such higher order entities. We report on an
experimental study in which a team of physical robots performs
a foraging task. The robots are “identical” in hardware and
control. They make little use of memory and take actions purely
on the basis of local information.

Our study advances the current state of the art in swarm
robotics with respect to the number of real-world robots engaging
in teamwork (up to 12 robots in the most challenging experiment).
To the best of our knowledge, in this paper we present the first
self-organized system of robots that displays a dynamical hierar-
chy of teamwork (with cooperation also occurring among higher
order entities). Our study shows that teamwork requires neither
individual recognition nor differences between individuals. This
result might also contribute to the ongoing debate on the role of
these characteristics in the division of labor in social insects.

Index Terms— Cooperation, division of labor, foraging,
group transport, hierarchy, path formation, self-assembly, self-
organization, swarm robotics, teamwork.

I. INTRODUCTION

ENEFITING from the development of ever cheaper and
smaller components, the study of multirobot systems has
received increasing attention over the last few decades. Using
a group of robots instead of a single one can have several
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advantages, such as increase in capabilities or efficiency, or
increase of redundancy and fault tolerance. However, also new
challenges arise. For example, when the number of robots
becomes large, traditional approaches that rely on a central-
ized management of the robots’ activities and on excessive
information exchange rapidly reach their limits. Furthermore,
such approaches are less tolerant to individual failure.

To overcome these problems, researchers in swarm robotics
draw inspiration from decentralized self-organizing biological
systems in general and from the collective behavior of
social insects in particular [27]. Swarm robotics systems
are then typically composed of robots that, at the individual
level, have relatively limited task-solving abilities and
limited knowledge about their environment. Still, the overall
system can exhibit complex behavior. This is realized in
a bottom-up fashion: complexity arises from the numerous
interactions among the robots and between the robots and
their environment. The general paradigm is often referred to
as swarm intelligence [14], [19], [25].

Presently, little is known about how to design swarm intel-
ligence systems. Thus, it is not surprising that the complexity
exhibited in current implementations does not come close
either to the complexity of biological systems, or to the
complexity of systems that men built following the more
traditional top-down approach.

In this paper, we investigate the conditions under which
complexity can “emerge” in swarm intelligence systems. We
believe that the design and study of such systems is relevant
not only for advancing the state of the art in robotics and
similar technologically driven disciplines, but it may also
provide invaluable insights to other disciplines such as biology,
economics, and social sciences.

One way of measuring the complexity that “emerges” in
a swarm intelligence system is to look at the structural
organization of individuals when performing a task. In an
insect colony, various organizational levels can be observed.
Behaviors both at the individual level as well as at the
colony level have been extensively studied [38]. “However,
between these two extremes, numerous functional adaptive
units, or ‘parts’ exist” [5, p. 291]. These intermediate-level
parts comprise groups and teams.

Teamwork is widely observed in vertebrates. Here, indi-
vidual recognition is believed to be an important factor [81].
Fewer examples of teamwork are known in invertebrates. Oster
and Wilson ([63]; reviewed in [3]) argue that members of
social insect colonies cannot form teams as a consequence
of their low grade of discrimination: social insects can dis-
criminate “nestmates from aliens, [and] members of one caste
as opposed to another” [63, p. 151], however, “there is very
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little evidence that social insects can recognize each other as
individuals (but see Tibbetts [76])” [3, p. 6]. In contrast, in the
recent literature [3], [21], [38], biologists suggest that teams
are indeed formed in social insects and that they do not require
individual recognition. Another aspect that is the subject of
ongoing debate is whether inter-individual differences (e.g.,
members of different castes) are fundamentally required for
teamwork [2], [13], [38].

One of the merits of studying robotic systems is that the
individual morphology and behavior are system variables that
are controlled. Therefore, we can investigate whether tasks
that require a complex division of labor fundamentally require
individual recognition or differences between individuals.

In this paper, we illustrate the methods and results of a
series of experimental works in which a set of “identical”
robots is required to perform a complex cooperative task. At
the beginning of a trial, the robots are randomly scattered in
a bounded arena that contains two objects—the prey and the
nest. The task is to retrieve the prey to the nest. The following
constraints are given:

1) Ci: the prey requires concurrent, physical handling by
multiple robots to be moved;

2) C,: each robot’s perceptual range is small when com-
pared to the distance between the nest and the prey.
Moreover, perception is unreliable;

3) C3: no robot has any (explicit) knowledge about the
environment beyond its perceptual range;

4) C4: communication among robots is unreliable and
limited to a small set of simple signals that are locally
broadcast.

These constraints have implications on the division of
labor within the group. Some robots are required to engage
in the physical handling of the prey (constraint Cp). To
do so, they self-assemble into physically connected pulling
structures. While pulling the prey, the robots neither perceive
the nest (constraint Cy) nor have any knowledge about its
location in the environment (constraint C3). Moreover, they
can not communicate (directly) with other robots near the nest
(constraint Cy4). In principle, they could transport the prey
in a random direction. However, this has no practical value
in large arenas or open space. Our solution to the problem
is to have some robots establish a path between the nest
and the prey, along which the transport is guided toward the
nest.

In the following we use the terms groups and teams as
defined by Anderson and Franks [2]. In particular, a group
is a set of individuals that tackles a group task; a team is a set
of individuals that tackles a team task. A group task is a task
that “requires multiple individuals to perform the same activity
concurrently”; a team task is a task that “requires different
subtasks to be performed concurrently” (p. 535). Furthermore,
a partitioned task is “a task that is split into two or more
subtasks that are organized sequentially (Jeanne [41]; reviewed
in Ratnieks and Anderson [69]; Anderson and Ratnieks [6])”
[3, p. 4]. Anderson and Franks [2], [3], and Anderson and
McMillan [4] found that the definition of teamwork, developed
primarily from studies of social insects, also applies more
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Fig. 1. Tllustration of the division of labor to accomplish the foraging task
under constraints C1, Cp, C3, and C4 (for details, see text). The overall task is
a partitioned task. It splits into three (sub-) tasks—path formation, recruitment
and retrieval—that are organized sequentially (indicated by arrows). Path
formation requires multiple robots to explore collectively the environment
and establish a path between the nest and the prey. Recruitment requires
some robots to maintain the established path (path maintenance) and other
robots to follow the path from the nest to the prey before either grasping the
prey directly or grasping other robots that are already attached to the prey
(path following & grasp). Retrieval requires those robots that are gripping
the prey and/or other robots, to transport the prey along the path back to
the nest (group transport). The path gradually dissolves as the transport
proceeds (path decomposition). Group transport involves multiple robots,
each of which can or cannot perceive the path depending on the particular
situation [transport (path visible) and transport (path invisible)]. Individual
tasks, group tasks, and team tasks are framed respectively by dotted, dashed
and solid lines.

generally to societies of other animals, including humans, and
robots.

Fig. 1 illustrates the division of labor present in our sys-
tem. The overall task can be considered a partitioned task
comprising three subtasks that are organized sequentially:
1) path formation requires robots to explore the environ-
ment and form a path in between the nest and the prey;
2) recruitment requires robots to follow the path from the
nest to the prey and then grasp either the prey directly or
other robots already attached to the prey; 3) retrieval requires
robots to transport the prey along the path to the nest. Path
formation itself is a group task, because only a group of
robots can establish a path. Similarly, path maintenance and
the stepwise path decomposition are group tasks. Recruitment
is a team task, because it requires two different sub-tasks
to be performed concurrently—path maintenance and path
following & grasp, where the latter is an individual task.!
Retrieval is a team task, as some robots have to engage in
group transport while others, at the same time, have to reside
in the path to guide the transport robots toward the nest.
Group transport is a team task, as 1) multiple robots are
required to transport the prey, and 2) the transporting robots
that are (temporarily) unable to perceive the path (and thus the
transport direction) need to perform distinct actions to avoid
the group transport being ineffective.

The remainder of this paper is organized as follows. In
Section II, we overview related work. In Sections III and IV,
we detail the robot’s hardware and control. In Section V,
we present the experimental setup and the results. Finally, in
Section VI, we discuss the results and conclude the paper.

!t needs to be performed by multiple individuals (constraint C), however,
they do not have to act concurrently.
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II. RELATED WORK

The task tackled in this paper involves three broad chal-
lenges: 1) navigation, that is, the formation, maintenance and
stepwise decomposition of a path as well as path following;
2) self-assembly, in other words, the formation of physically
connected (pulling) structures; and 3) group transport, that is,
the cooperative pushing and pulling of the prey toward the
nest. The problems of navigation, self-assembly, and group
transport have been extensively studied, each in its own right.
In the following, we give an overview of the related work in
these areas.

A. Navigation

As mentioned in the introduction, we are interested in
approaching the problem for large groups of robots following
the swarm robotics principles, where the cooperation and the
collectivity of a robot group are emphasized.

These characteristics can be observed in social insects, such
as ants, bees, or termites. When foraging, ants of many species
lay trails of pheromone, a chemical substance that attracts
other ants. Deneubourg et al. [16] showed that pheromone
trails help ants to find the shortest path between a nest and a
food source. When approaching the problem of controlling
swarms of robots, researchers often take inspiration from
social insects, and in the case of path formation sometimes
directly refer to the term pheromone [51], [66], [67], or to
ants [75].

All these approaches employ distributed control mecha-
nisms, and mostly rely on simple strategies and on local in-
formation. We can roughly distinguish between two categories
of distributed multiagent path planning.

1) The path is formed by a network of immobile devices.
The devices are placed either a priori at fixed positions,
or by the robots themselves. An individual network
node usually has very limited perception and computing
capabilities. Robots can locally communicate with the
network to find a path in the environment. Due to their
simplicity, network nodes have low power consumption
and are relatively cheap to produce, which make them
ideally suited for large-scale experiments. O’Hara and
Balch [62], for instance, use a sensor network with up
to 156 sensor nodes that compute the shortest path using
the distributed Bellman—Ford algorithm [12], and test the
impact of different configurations of sensor placement.
Li et al. [50] use a similar approach with 50 sensors
of the Mote platform and take into account so-called
danger zones which have to be avoided. Batalin and
Sukhatme [11] study a sensor network in the context
of terrain coverage and navigation. A robot action is
computed based on transition probabilities between the
nodes. They use the Pioneer mobile robot and nine
nodes.

In the simplest case, network nodes do not have any
sensory capabilities and are used as landmarks or as a
medium for indirect, so-called stigmergic, communica-
tion [29]. An example is radio frequency identification
(RFID) based devices. Mamei and Zambonelli [51],
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[52] use passively powered RFID tags in an office
environment to mark fixed locations, such as desks, and
to identify objects that may be moved around, such
as books. In their experiments, robots can manipulate
the RFID tags and leave a trail which enables other
robots to find particular objects. In addition to their
low production cost, such devices in general have the
advantage of being more robust than robots. However,
they have to be placed in the environment a priori, or
by the robots. This is not required if the robots form the
path themselves.

2) The robots serve as landmarks or beacons them-
selves. This is the case for our approach, as we will
explain in more detail in Section IV. When designing
our controllers, we took inspiration from Goss and
Deneubourg [28], who have studied robot chains in the
context of foraging. In their approach, every robot in a
chain emits a signal indicating its position in the chain.
A similar system was implemented by Drogoul and
Ferber [20]. Both works were carried out in simulation,
and in both works robots in a chain structure need to
discriminate between as many signals as there are robots
in the chain. In contrast, in our approach robots need to
discriminate only between a constant number of signals
independent of the length of the chain.

Werger and Matari¢ [79] use physical robots to form a
chain in a prey retrieval task. The robots in the chain rely
on physical contacts: adjacent robots touch each other
regularly in order to maintain the chain.

Ichikawa and Hara [39], [40] and Payton et al. [66], [67]
study robot networks which can be used to represent a
path as well. Initially, the robots are gathered in one
place. Then, they gradually expand the area covered
by their network while maintaining nearest-neighbor
communications. Ichikawa and Hara consider a system
of up to 40 robots of which one broadcasts locally and
periodically a signal. The other robots move at random.
When a robot does not perceive any signal anymore,
it retreats to reestablish the contact it has lost. It then
becomes itself a static beacon, thereby expanding the
network. On the other hand, Payton ef al. consider a
gas expansion model that leads to a uniform distribution.
A group of robots first spreads in the environment
using simple attraction/repulsion mechanisms. Then the
robots communicate three different sorts of pheromone
to select the shortest of the many different possible
paths. Payton et al. also consider another strategy to
form the network, which is referred to as guided growth.
One robot is selected to be the leader and the other
robots follow the leader. In this way the robot structure
stretches to form a line. The leading robot can for
instance be designated by the user.

B. Self-Assembly

Following Whitesides and Grzybowski [80], self-assembly
can be defined as a process by which pre-existing discrete
components organize into patterns or structures without human
intervention.
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Self-assembly is widely observed in social insects [7],
[72]. Via self-assembly, ants, bees, and wasps can organize
into functional units at an intermediate level between the
individual and the colony. Anderson et al. [7] identify 18
distinct types of self-assembled structures that insects build.
The function of self-assemblages “can be grouped under five
broad categories which are not mutually exclusive: 1) defense,
2) pulling structures, 3) thermoregulation, 4) colony survival
under inclement conditions, and 5) ease of passage when
crossing an obstacle” (p. 99). Anderson et al. [7] claim that
in almost all of the observed instances, the function could not
be achieved without self-assembly.

Self-reconfigurable robots [71], [83] hold the potential to
self-assemble and thus to mimic the complex behavior of
social insects. In current implementations [42], [58], [71],
[83], however, single modules usually have highly limited
autonomous capabilities (when compared to an insect). Typ-
ically, they are not equipped with sensors to perceive the
environment. Nor, typically, are they capable of autonomous
motion. These limitations, common to most self-reconfigurable
robotic systems, make it difficult to let separate modules,
or groups of modules, connect autonomously. In some sys-
tems, self-assembly was demonstrated with the modules be-
ing prearranged at known positions [84]. Some instances of
less constrained self-assembly are reported (for an overview
see [34]). For example, Fukuda et al. [22], [24] demonstrate
self-assembly among robotic cells of the cellular robotic
system (CEBOT) [23]. In the experiment, a moving cell, which
was controlled by a finite-state automaton, approached a static
cell and connected to it. Rubenstein et al. [70] demonstrate
the ability of two modular robots to self-assemble. Each robot
consisted of a chain of two linearly-linked configurable robot
(CONRO) modules [15]. The control was heterogeneous, both
at the level of individual modules within each robot and at
the level of the modular makeup of both robots. Recently,
self-assembly has also been demonstrated with the swarm-bot
system [57]. Experiments were conducted on different terrains
and with up to 16 physical robots [30].

C. Group Transport

Group transport can be defined as the “conveyance of a
burden by two or more individuals” [56, p. 227]. In the
biological literature, group transport is almost exclusively
reported in the context of ants. In fact, Moffett [56, p. 220]
claims that group transport “is better developed in ants than
in any other animal group.”

In most studies of transport with robotic groups, the robots
move an object by pushing it. Pushing strategies have the
advantage that they allow the robots to move objects that
are hard to grasp. In addition, multiple objects can be pushed
at the same time. On the other hand, it is difficult to predict
the motion of the object and of the robots, especially if
the ground is not uniform. Therefore, the control typically
requires a sensory feedback mechanism. Most studies consider
two robots pushing a wide box simultaneously from a single
side [18], [26], [53], [64], [74]. To coordinate the robots’
actions, robots are specifically arranged [18], [26], [53], [64],

control is synchronized [53], relative positions are known [18],
[64], explicit communication is used [53], [64], and/or indi-
vidual tasks are generated by a designated leader agent [26].

Only a few studies consider more than two robots, pushing
a box simultaneously [45], [46], [48], [82]. In these cases, the
control is homogeneous and decentralized; the robots make no
use of explicit communication.

Many studies consider the transport of an object by multiple
mobile robots grasping and/or lifting it. In these studies,
typically 2-3 robots are manually assembled with the ob-
ject [1], [17], [43], [54], [73], [78]. In some studies, the
robots are also capable of self-assembling [31], [32], [35],
[37], [77]. To coordinate the robots’ actions, robots often have
knowledge of their relative positions. In some systems the
desired trajectories are given prior to experimentation to all
the robots of the group. The object is transported as each
robot follows the given trajectory by making use of dead-
reckoning [17]. In other systems, the manipulation is planned
in real time by an external workstation, which communicates
with the robots [54]. Often, instead of an external computer, a
specific robot called the leader knows the desired trajectory or
the goal location. The leader robot can send explicit high- or
low-level commands to the followers [73], [78]. However, in
many leader—follower systems explicit communication is not
required [1], [36], [43].

III. HARDWARE

We use a robotic system called swarm-bot lying at the
intersection between collective and self-reconfigurable robot-
ics [57]. The system is composed of basic robotics units, called
s-bots,” which are fully autonomous and mobile, and capable
of autonomously connecting to each other.

Fig. 2(a) shows the physical implementation of the s-bot.
The robot has a total height of 19cm, a diameter of 12cm,
and weighs approximately 700 g. In the following, we briefly
overview the actuators and sensors most relevant to this paper.
For a more comprehensive description of the s-bot’s hardware
see [57].

The s-bot has five degrees of freedom (DOF) all of which
are rotational:

1) two DOF for the differential freels system—a combina-

tion of tracks and two external wheels;

2) one DOF to rotate the s-bot’s upper part (called the

turret) with respect to the lower part (called the chassis);

3) one DOF for the grasping mechanism of the gripper (in

what we define to be the s-bot’s front);

4) one DOF for elevating the arm to which the gripper is

attached (e.g., to lift another s-bor).

These DOF are actuated by DC motors equipped with an
incremental encoder and controlled in torque, position, or
speed by a PID controller.

For the purpose of communication, the s-bot is equipped
with eight RGB LEDs distributed around the module, and two
loudspeakers.

2The s-bot was developed within the SWARM-BOTS project, a Future and
Emerging Technologies project funded by the European Commission (see
www.swarm-bots.org).
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Fig. 2. Overview of the hardware. (a) s-bot robot. (b) Image taken by the omnidirectional camera of the s-bot. It shows seven other objects (an s-foy and
six s-bots at various distances), five of which have activated their LEDs in red. (c) One of the two s-foys, which is used either as a nest or as a prey.

An s-bot can connect with another by grasping the connec-
tion ring with the gripper, and it can receive connections on
more than two-thirds of its perimeter.

The s-bot is equipped with a variety of sensors:

1) four proximity sensors fixed underneath (ground sen-
Sors);

2) fifteen proximity sensors distributed around the turret;

3) two optical barriers integrated in the gripper;

4) one force sensor between the turret and the chassis (2-D
traction sensor);

5) one torque sensor on the elevation arm of the gripper;

6) three-axes inclinometer;

7) eight light sensors distributed around the module;

8) four omnidirectional microphones;

9) one VGA camera directed toward a spherical mirror to
provide an omnidirectional view.

Furthermore, proprioceptive sensors provide internal motor
information such as torque, position, and speed.

The chassis of each s-bot can be rotated in any horizontal
direction. This allows s-bots, once assembled within a modular
robot (and not necessarily aligned with one another), to move
in a common direction. The 2-D traction sensor, mounted
between the s-bot’s turret and the chassis, measures the
mismatch between the direction in which the chassis is trying
to move and the direction in which the modular robot as a
whole is trying to move.

A snapshot taken from an s-bot’s camera is shown in
Fig. 2(b). The software used to detect colored objects allows
the recognition of the red colored prey for distances up to
70-90cm, and of objects colored blue, green, or yellow for
distances up to 35-60cm (depending on the light conditions
and on which s-bot is used). Due to the spherical shape of the
mirror the camera is directed to, only distances to close objects
(up to 30cm) can be approximated with good precision.

Fig. 2(c) shows the s-foy, an object that we use either as nest
or as prey (depending on its color). It has a diameter of 20 cm

and, like the s-bot, is equipped with RGB LEDs. The nest is
immobile. The prey weighs 800 g and requires the cooperative
effort of two or more s-bots to be moved.

IV. CONTROLLER

The controller consists of a collection of behaviors, each
of which is designed to achieve a specific goal. Control
policies for navigation, self-assembly, and group transport
have been implemented and tested independently of each other
by different researchers not necessarily using the same design
approach. The individual behaviors are implemented using
either the motor schema paradigm, neural networks, or simple
hand-written commands. In order to integrate the different
behaviors, we follow a behavior-based approach [10]. The
behaviors and the rules that trigger a transition from one
behavior to another are illustrated by the state diagram in
Fig. 3.

The s-bots are initially located at random positions. If an
s-bot does neither perceive a chain nor the nest, it performs a
random walk (state search chain). An s-bot that finds a chain
or the nest follows the perimeter of the encountered structure
in a clockwise sense (state explore chain). The nest can be
considered as the root of all chains. When the s-bot reaches
the tail of a chain, it will join the chain with probability P;,
per time step (state join chain). S-bots that are part of a chain
do not leave it unless they are situated at the chain’s tail, in
which case they leave it with probability P,,; per time step.
The process of probabilistically joining/leaving a chain is at
the basis of the exploration of the environment, as it allows
the formation of new chains in unexplored areas.

If a chain member perceives the prey, it does not leave the
chain. Therefore, when a chain encounters the prey, the formed
path becomes stable. At this point there are two possibilities:
If the prey is far, other robots can still join the chain to make
a connection that is closer to the prey; if the prey is close, the
subtask of path formation is successfully accomplished. Once
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State diagram of the finite state machine that controls each s-bot. Circles represent states (i.e., behaviors). Edge labels specify conditions that trigger
transitions between the corresponding states. The initial state is search chain.

P;;; (Pout) is a boolean variable, which is set to True with probability P,

(Pout), and False otherwise. The value of P;; (Pyy:) determines the rate at which s-bots join (leave) a chain.

a path is formed, it is maintained and in this way automatically
recruits other s-bots to assemble to the prey (state assemble).
If a robot that tries to assemble to the prey does not succeed
within a certain time period, it moves back to the nest and
rests for a while (state recovery). When a sufficient number
of s-bots has assembled to the prey, the transport effectively
starts. Robots assembled to the prey transport it by moving
toward the closest perceived member of a chain (state transport
target). In the event that some s-bots cannot perceive the
path, they use their force sensors to estimate the direction
of transport (state transport blind). When the prey reaches the
tail of the path, the corresponding s-bot leaves the path and
moves back to the nest to rest for a while (state recovery).
In this way the transporting structure of s-bots is guided from
node to node of the dissolving path to eventually reach the
nest. An s-bot leaving the path to rest at the nest emits a
sound signal for a period of 30s. Transporting s-bots respond
to this signal by temporarily suspending the transport. This
prevents the transporting s-bots from colliding with the s-bot
leaving the tail of the path as it gives the latter sufficient time
to move away. No other s-bot reacts to the sound signal.?
The behaviors can be grouped into two main modules: 1) the
navigation module for the exploration of the environment to
form a path between nest and prey, the recruitment of s-bots to
the prey, and the guidance of the transporters back to the nest;
and 2) the assembly and transport module for the formation
of pulling structures and the group transport of the prey along
the path to the nest.

3In principle, sound can be considered to be a global signal. However, as
the sound signal is used only to avoid (local) physical collisions, it plays
the role of a local signal. It would have been more elegant to use a purely
local signaling method instead of sound, for example, to assign a fifth color
to the LEDs of s-bots that leave the path to rest at the nest, and to let the
transporting s-bots respond to this color. Unfortunately, we could not use five
different colors, as our vision software cannot discriminate between more than
four colors reliably. Note that using a purely local signaling method could be
of advantage, for example, if multiple objects were retrieved at a same time.

|(Xpre\'iou> - (Xnex(l .

Prey

kk ol " Nest

Fig. 4. Concept of cyclic directional patterns (CDP) chains. The small
colored circles represent s-bots that have formed a CDP chain that connects
the nest to the prey. Three colors are sufficient to give a directionality to the
chain. The large dotted circles surrounding the s-bots indicate their perceptual
range. The small uncolored circle above the chain represents an explorer s-
bot following the chain toward the prey. The small uncolored circle below
the chain represents an s-bot performing a random walk. Vector 047, here
indicated for one chain member only, represents the motor schema that leads
to an overall alignment of the chain. Vectors m and v 4 p, here indicated
for the explorer s-bot, represent the motor schemas that lead to a tangential
trajectory along the chain. Vector vjs§ represents the motor schema that leads
to forward motion.

A. Navigation Module

The navigation module lets s-bots organize into directional
chains that regulate the exploration, recruitment, and guidance
processes. The directionality in the chains relies on the concept
of cyclic directional patterns (Fig. 4). Each s-bot emits one
out of three signals (using its LED colors) depending on its
position in the chain. By taking into account the sequence of
the signals in the chain, an s-bot can determine the direction
toward the nest, or toward the prey. The prey and the nest can
be recognized by their color. The nest is blue, and the prey is
red.

1) Motor Schemas: In the navigation module, the behaviors
are realized following the motor schema paradigm [8], [9].
A motor schema couples perception to action without the
use of abstract representations. The motor schemas can be
considered as basic building blocks for a behavior. Each motor
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schema outputs a vector representing the desired direction of
motion. For each behavior, a set of motor schemas is active
in parallel. Active motor schemas are added and translated
into motor activation at the beginning of each (control) time
step.* Common to all behaviors is a motor schema for collision
avoidance.

The following motor schemas are used (see also Fig. 4).

1) Adjust_Distance(a, dc,r, dgjes): returns a vector m
that points toward an object at angle a if the current
distance to the object d, is larger than the desired
distance dj.5, and in the opposite direction otherwise.
The length of the returned vector is proportional to the
value of |d.,r — dges|. In order to avoid an oscillating
behavior, the vector is set to zero if |d ., —djes| < 5cm.

2) Move_Perpendicular(a, clockwise): returns a unit vec-
tor opp that is perpendicular to an object at angle a.
The boolean parameter clockwise determines whether
the vector is perpendicular in a clockwise sense or not.

3) Avoid_Collisions(pg, p1, ..., p14): returns a vector zKC)
that takes into account the activations of the turret’s
proximity sensors (po, p1,- .-, p14) that are above a
threshold. The direction of the vector is opposite to the
direction of the sensor with maximum activation, and
its length is proportional to the difference between the
activation and the threshold.

4) Move_Straight: returns a unit vector 1)715 that points
forward.

5) Align(a previous, Onexr): TEtUrNS a vector a7 that leads
to the alignment between the previous and the next
chain neighbor which are perceived at angles o prepious
and ajey; (in degrees). The length of the vector is
proportional to the value of 180° — |0 previous — %nextl-
In order to avoid an oscillating behavior, the vector is
set to zero if |@previous — @nexel > 170° (with 180°
representing perfect alignment).

2) Behaviors:
behaviors.

The navigation module comprises four

1) Search Chain: perform a random walk by moving
straight until an obstacle is detected ahead. Then turn
on the spot for a random angle. LEDs are off. Active
motor schemas: move_straight, avoid_collisions.

2) Explore Chain: cycle at a constant distance around the
nearest chain member in a clockwise sense (repeat this
action once the next chain member becomes the nearest
chain member). Thereby, the explorer moves along the
chain. In case an s-bot becomes an explorer by leaving
a chain, it first moves back to the nest, and then turns
around the nest to follow a (possibly) different chain or
to start (probabilistically) a new chain by itself. LEDs
are off. Active motor schemas: move_perpendicular,
adjust_distance, avoid_collisions.

3) Join Chain: activate LEDs with the appropriate color,
which depends on the color of the previous chain neigh-
bor. Align with the two closest neighbors in the chain
(see Fig. 4). (This behavior improves the overall length

4The time step has a length of approximately 0.120s. This value is not
constant because it depends on the time required for image processing.
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of the chain. A side effect of this is that loops within
the chain are avoided.) Furthermore, adjust the distance
with respect to the previous neighbor to roughly 27 cm
(to guarantee a visual connection of the chain neigh-
bors). Active motor schemas: adjust_distance, align,
avoid_collisions.

4) Recovery: move back to the nest and rest. Emit a sound
signal for 30s.> LEDs are off. Active motor schemas:
move_perpendicular, adjust_distance, avoid_collisions.

3) Behavior Transitions: The following set of conditions
trigger behavior transitions.

1) Search Chain — Explore Chain: if a chain member
is perceived. Note that the nest is perceived as chain
member, and that s-bots in state search chain do not
respond to the perception of the prey.

2) Explore Chain — Search Chain: if no chain member
is perceived any more.

3) Explore Chain — Join Chain: 1) if the prey is not
perceived and the tail of a chain is reached (i.e., only
one chain member is perceived), the s-bot joins the chain
with probability P;, per time step, or 2) if the prey is
perceived at a distance > 30cm and the tail of a chain
is reached.

4) Explore Chain — Assemble: if the prey is detected at
a distance < 30cm.

5) Join Chain — Search Chain: if the previous chain
neighbor is no longer perceived.

6) Join Chain — Explore Chain: if situated at the tail of
a chain and if the prey is not perceived, the s-bot leaves
the chain with probability P,,; per time step.

7) Join Chain — Recovery: if the prey is perceived
at a very close distance (i.e., less than 5cm), which
only occurs if the prey is transported toward the chain
member.

8) Recovery — Search Chain: if T,.copery = 30s has
elapsed.

The two probabilistic parameters P;, and P,,; have a
significant effect on the overall behavior of the s-bot group.
This concerns in particular the number and length of the
formed chains and the dynamics of the process that governs
the formation and decomposition of chains. For instance, low
values for P;, result in a rather patient behavior; in most
cases a single chain is formed slowly. For P;, close to 1,
several chains are formed fast and in parallel. The second
parameter P,,; determines the stability of the formed chains,
directly influencing their lifetime and the frequency of chain
disbandment. Using computer simulations we evaluated the
performance of the navigation module for different combi-
nations of P;, and P,,; [59]-[61]. Following this, we have
chosen P;, = 0.14 and P,,; = 0.007. On average, these
parameter values fit well the environmental circumstances. A
more elaborate strategy would be to let the robots themselves
adapt their parameters, for example, see [49], [55], [65].

SNo sound signal is emitted if state recovery was triggered from state
assemble. In a strict sense, thus, two distinct recovery states exist.
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B. Assembly and Transport Module

The assembly and transport module lets s-bots organize into
pulling structures that move the prey along a path established
by other s-bots back to the nest. The s-bots can exert forces
either directly on the prey or indirectly via other s-bots they
are physically connected with. In the following the behaviors
and behavioral transitions are detailed.

1) Behaviors: The assembly and transport module com-
prises three behaviors.

1) Assemble: activate a feed-forward artificial neural
network—a single-layer perceptron—that takes input
from the camera as well as sensor readings from the
left-front and right-front proximity sensors (pg and pi4).
Use the network’s output to control the speed and status
of the tracks and the connection mechanism. LEDs are
off. The network is trained to let the s-bot approach and
grasp nearby objects that have activated their LEDs in
red. (Initially, the prey is the only object with red LEDs.
Upon connection, an s-bot activates its own LEDs in
red. Therefore, it becomes itself an object with which
to establish a connection.) The connection strength pa-
rameters of the neural network controller have been
synthesized by an evolutionary algorithm [33]. A
detailed description of the behavior can be found
in [30].

2) Transport Target: activate LEDs with color red. If
a sound signal is perceived, rest. Otherwise, orient
the chassis toward the closest chain member, which
indicates the direction to the nest, and start pulling. A
detailed description of the behavior can be found in [37],
[77].

3) Transport Blind: activate LEDs with color red. If a
sound signal is perceived, rest. Otherwise, activate a
simple recurrent neural network that is fed with input
from the force and torque sensors, and use the network’s
output to control the speed of the tracks and the desired
orientation of the chassis. The force sensor indicates the
mismatch between the s-bot’s own direction of motion
and the motion of other s-bots it is connected with;
moreover, it is influenced by the prey that is transported.
The torque sensors (of the treels and of the turret)
give an estimate on whether stagnation is present. The
connection strength parameters of the neural network
controller have been synthesized by an evolutionary
algorithm. A detailed description of the behavior can
be found in [36].

2) Behavior Transitions: The following set of conditions
trigger behavior transitions:

1y
2)

3)

4)

Assemble — Recovery: if Tysempry = 90 s has elapsed;
Assemble — Transport Target: if connected to an
object;

Transport Target — Transport Blind: if no chain
member is perceived;

Transport Blind — Transport Target: if a chain
member is perceived.

TABLE 1
NUMBER OF s-bots REQUIRED TO ACCOMPLISH SUB-TASKS path formation
(Np), recruitment (Ny) AND retrieval (Ny) FOR DIFFERENT INITIAL
DISTANCES (D IN cm) BETWEEN THE NEST AND THE PREY

D 30 60 9 120 150 180 210 240
Np 0 1 2 3 4 6 7 8
Ny 2 3 4 5 6 8 9 10
N; 2 3 4 5 6 8 9 10

V. EXPERIMENTS

In this section we first describe the experimental setup and
then present and discuss the obtained results.

A. Experimental Setup

The experiments take place in a bounded arena of size
500 cm x 300 cm. The nest is positioned in the center of the
arena. The prey is put at distance D away from the nest
toward one of the four corners. N s-bots are positioned on
a grid composed of 60 points, which are uniformly distributed
in the arena. The initial position of each s-bot is assigned
randomly by uniformly sampling without replacement. An s-
bot’s initial orientation is chosen randomly from a set of 12
possible directions.

We conduct two sets of experiments. In the first set we ex-
amine three setups (N, D), with a linear relationship between
group size N and distance D: (2, 30), (4,60), and (8, 120),
where distances are expressed in centimeters. For each of the
three setups we conduct 10 independent trials. In the second
set of experiments we study a wider range of experimental
setups, with group sizes N = 1,2, 3,4,5,6,7, 8, 10, and 12,
and distances (in cm) D = 60, 90, 120, 150, 180, 210, and
240. For each of these 70 setups we conduct a single trial.

The number of s-bots required to form a path connecting
the prey with the nest depends on the initial distance between
the two objects. To calculate lower bounds for the number
of s-bots, we assume the s-bots to be organized in a single
chain, which is perfectly linear and directed toward the prey.
The lower bound values can be calculated from the distances
between the individual nodes forming the path from the nest
and the distance of the last chain member from the prey (all
distances are measured from center to center). The distance
between neighboring nodes forming the path is programed
to be constant. The actual distances vary slightly due to
imprecision in the s-bots’ perception. The average distance
observed between neighboring chain members (i.e., s-bots) is
27 cm. The average distance observed between the first chain
member and the nest is 30.5cm, and the distance between
the last chain member and the prey is at most 38.5cm.® The
lower bound values so computed are given in Table 1. For the
accomplishment of the overall foraging task, two additional
s-bots are required to transport the prey.

During experimentation, the s-bots are fully autonomous.
The only exception to this is when an s-bot topples over. To

6The average distance between the first chain member and the nest is slightly
larger than expected. The reason for this is that the radius of the nest (as well
as of the prey) is about 4.0 cm bigger than the radius of the s-bot.
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(b)
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Fig. 5.

)

Sequence of images taken for a trial with group size N = 8 s-bots and distance D = 120 cm between the nest (blue cylindrical object) and the prey

(red cylindrical object): (a) t =0s, (b) t =43s, (¢c) t = 101s, (d) t = 1465, (e) t = 181 s, and (f) t = 307s.

protect its hardware from being damaged (e.g., the camera
mirror), we then remove the s-bot manually from the arena,
and do not replace it until the end of the trial.

B. Results

According to the task description in Fig. 1, we can distin-
guish three levels of success, which are satisfied respectively,
if:

1) path formation is completed (success level 1); in other
words, a path connecting nest and prey has been formed
and can be traversed in both directions;

2) recruitment is completed (success level 2); in other
words, two or more s-bots have been recruited and are
physically assembled with the prey so that the transport
can start;

3) retrieval is completed (success level 3); in other words,
the prey, or an s-bot transporting it, is in physical contact
with the nest.

Variables T),, T,, and T; denote the completion times (in s)
for sub-tasks path formation, recruitment, and retrieval.

1) First Set of Experiments: We performed 30 trials in total.
In 29 trials the overall task was successfully completed, that is,
all three levels of success were satisfied. In the remaining trial,
which belongs to setup (N, D) = (8, 120), only the first two
success levels were satisfied. The system failed to complete

sub-task retrieval as an s-bot incorrectly assumed that it was
part of the transport structure.

Fig. 5 shows a series of images taken during trial 8 of the
setup (N, D) = (8, 120). Within the first 965, four s-bots find
the nest [Fig. 5(a) and (b)], and establish a path to the prey
[Fig. 5(c)]. At time t = 144 s, one of the four remaining s-
bots is successfully recruited, and thus has gripped the prey
and activated its LEDs in red [Fig. 5(d)]. This s-bot alone
is not strong enough to pull the prey. However, shortly after,
another s-bot becomes part of the pulling structure [Fig. 5(e)].
The so-formed group of two s-bots starts moving the prey. The
transport group follows the path which gradually decomposes
as the prey approaches the nest. The overall task is completed
at time r = 307 s [Fig. 5(f)].

Table II lists the measured completion times T}, 7, and T;
for the different sub-tasks. In the trials with setups (N, D) =
(2,30) and (4, 60) sub-task path formation is accomplished
faster than any other sub-task. In setup (2, 30), no path needs
to be formed; in setup (4, 60), a path requires only one s-bot
to find the nest and to form a chain in the direction of the prey
(see Table I). Most time was spent for sub-task recruitment,
on average 211.9 and 133.3s for setups (2, 30) and (4, 60),
respectively. Recall that all s-bots start from random positions
in the arena and initially search the nest by performing a
random walk. As the arena is large when compared to the
s-bot’s perceptual range, it can take a considerable amount of
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TABLE II
SUMMARY OF THE RESULTS FOR THE FIRST SET OF EXPERIMENTS. WE INVESTIGATED THREE SETUPS (N, D) WITH A LINEAR RELATIONSHIP
BETWEEN GROUP SIZE N AND DISTANCE D: (2, 30), (4, 60), AND (8, 120). THE VALUE OF T), DENOTES THE TIME IT TAKES THE s-bots TO FORM THE
PATH, T, DENOTES THE TIME IT TAKES THE FIRST TWO s-bots TO BE RECRUITED, AND 7; DENOTES THE TIME IT TAKES THE s-bots TO
RETRIEVE THE PREY TO THE NEST. ALL RESULTS ARE GIVEN IN SECONDS. IF NO VALUE IS GIVEN, THE RESPECTIVE
SUB-TASK WAS NOT SUCCESSFULLY COMPLETED

Trial 2 s-bots 4 s-bots 8 s-bots
Tp T T; >T Tp T Ty >T Tp T, T; >T
1 0 78 20 98 30 128 26 184 39 60 53 152
2 0 169 21 190 27 306 51 384 105 217 43 365
3 0 354 19 373 22 85 47 154 214 48 57 319
4 0 148 32 180 12 119 27 158 28 43 178 249
5 0 209 34 243 20 59 37 116 107 80 129 316
6 0 135 24 159 10 195 154 359 76 39
7 0 394 14 408 29 106 25 160 69 86 86 241
8 0 414 25 439 28 65 82 175 96 82 129 307
9 0 132 23 155 48 119 28 195 72 154 49 275
10 0 86 114 200 19 151 41 211 114 42 91 247
Mean 0 211.9 32.6 244.5 24.5 133.3 51.8 209.6 92.0 85.1 90.6 274.6
0%) (86.7%) (13.3%) (100%) (11.7%) (63.6%) (24.7%) (100%) (34.2%) (32.9%) (33.0%) (100%)
Std. Dev. 0 127.5 29.2 118.8 10.8 72.8 39.8 89.3 51.5 57.7 46.3 61.7
— 250 F 2 s-bots TABLE III
Z 200 g::ﬁg:g OVERALL LEVEL OF SUCCESS ACHIEVED FOR SETUPS (N, D) IN THE
}:’ 150 SECOND SET OF EXPERIMENTS (AS DEFINED AT THE BEGINNING OF
Q
_E 100 SECTION V-B): NO SUCCESS (0), SUB-TASK path formation
5(;) ~% ACCOMPLISHED (1), SUB-TASK recruitment ACCOMPLISHED (2), AND
6 ; 2 3 4 5 6 7 8 SUB-TASK retrieval ACCOMPLISHED (3). ENTRIES IN PARENTHESES

Number of s-bots that found the nest or a chain connected to it

Fig. 6. Time until the nth s-bot finds either the nest or a chain (which provides
a path to the nest) for the first set of experiments with (N, D) = (2, 30),
(4, 60), and (8, 120).

time until two out of two, or three out of four s-bots have
encountered the area from which they can perceive either the
nest or a chain connected to it.

The situation is different for the setup with eight s-bots.
Only 85.1s was spent on average for sub-task recruitment,
which is significantly less than the times observed for group
sizes two or four, respectively (two-sided Mann—Whitney,
p = 0.05 before Bonferroni correction). Also, the time until
a sufficient number of s-bots have found the nest drops from
109s (103s) for group size two (four) to 56s for group size
eight (see Fig. 6). We believe that there are two reasons for
this. First, the higher the number of robots, the higher the
degree of redundancy: in the system with eight s-bots, five
of them are candidates for recruitment (while only two are
required), whereas in the system with two s-bots (four s-bots)
only two (three) are candidates for recruitment (see Table I).
Second, the larger the group size, the more s-bots take part
in the chain formation process, in this way extending the area
from which a path to the nest can be found by those s-bots
still performing the initial random walk. This accelerates the
process of gathering s-bots at the nest.

The time spent during retrieval 7; grows approximately
linearly with the distance between nest and prey: 32.6, 51.8,
and 90.6s are required for the three setups with D = 30, D =
60, and D = 120. This suggests that for the transport it is

DENOTE SETUPS THAT WERE NOT TESTED, AS THE NUMBER OF s-bots N
Is CLEARLY NOT SUFFICIENT TO SOLVE THE TASK. GRAY LEVELS OF
CELLS REPRESENT THE BEST ACHIEVABLE LEVEL OF SUCCESS (SEE

TABLE I): WHITE DENOTES NO SUCCESS, LIGHT GRAY DENOTES
SUCCESS LEVEL 1, AND DARK GRAY DENOTES SUCCESS LEVEL 3

D/IN 1 2
60 !
90 0 1
120 0 0
150 0 0
w0 o g
20 (0 (0
ORI g

not beneficial to increase the number of s-bots. Indeed, we
observed that a pulling structure of 2-3 s-bots seems to be the
optimal configuration for this particular transport task.

2) Second Set of Experiments: We examined the system
under a wide range of group sizes (N) and prey distances
(D). We conducted 70 trials, one for each different setup (for
details see Section V-A).”

Table III gives an overview of the level of success reached.
In 46 out of the 70 setups, a path can in principle be formed
(see Table I). In 44 out of the corresponding 46 trials, the
s-bots succeeded in forming a path. Only in two setups a path
was not formed even though there were enough s-bots. For
setup (N, D) = (8, 210) two s-bots failed to join the chain as

TThe choice of running 70 trials was dictated by the limited amount of
experimental time available.
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TABLE IV
COMPLETION TIMES (IN S) OF SUB-TASKS path formation (Tp),
recruitment (Ty), AND retrieval (T;) IN SETUPS (N, D) OF THE SECOND
SET OF EXPERIMENTS. IF NO VALUE Is GIVEN, THE RESPECTIVE
SUB-TASK WAS NOT SUCCESSFULLY COMPLETED

Tp: time required for path formation
D/N 1 2 3 4 5 6 7 8 10 12

60 82 144 14 64 14 15 11 12 19 1

90 76 45 23 99 28 32 35 14 8
120 192 88 174 493 160 88 97 65
150 662 337 486 32 379 511 78
180 317 1975 902 562 222 1649
210 2135 988 2370 810
240 827 335

T;: time required for recruitment
D/N 1 2 3 4 5 6 7 8 10 12

60 286 62 67 104 257 135 75 61
90 59 272 69 159 168 64 41
120 181 193 281 458 35 94
150 69 635 314 72
180 594 97 787
210 176 170
240 229 133

T;: time required for retrieval
D/N 1 2 3 4 5 6 7 8 10 12

60 17 121 246 276 33 47 19 183
90 41 23 158 80 20 538 129
120 56 80 245 144

150 201 123 165
180 63 146 170
210

240 258 447

explorers, thereby making it impossible to form a path. For
setup (N, D) = (8,240) a path requires all eight s-bots to
form one linear chain in the direction of the prey. This would
take a long time, as chains form into random directions and
several chains can form simultaneously. The trial was stopped
at time t = 2204 s because of empty batteries of some s-bots.

For setups (N, D) = (5,180) and (6,210), a path was
formed even though the number of s-bots was thought to
be insufficient. A path of five (six) s-bots has a maximum
predicted length of 30.5 +4 -27 4+ 385 = 177cm (30.5 +
527+ 38.5 = 204 cm), which is 3cm (6cm) less than the
distance that needs to be covered, and therefore is still within
the range of perceptual error of the camera.

In 33 out of the 46 setups, also sub-tasks recruitment and
retrieval can in principle be accomplished by the given number
of s-bots. In 27 out of these 33 setups, the s-bot group was
able to do so, and therefore the entire task was completed.
In six setups, however, although a path was formed and two
or more s-bots were recruited (and thus gripping the prey),
the retrieval back to the nest was not successful. For setups
(N, D) = (7,120), (8,150), (10,210), and (12, 120), the
gripper of one of the s-bots in the pulling structure opened
during the transport phase (e.g., this happened when the
corresponding s-bot stopped due to empty batteries). In this
way, the transport was blocked. For setup (N, D) = (6, 150)
the formed path was not linear and thus required one additional
s-bot (five in total). The remaining s-bot was not capable of
transporting the prey alone. For setup (N, D) = (12,210)
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TABLE V
COMPLETION TIME (IN S) OF THE OVERALL FORAGING TASK IN SETUPS
(N, D) OF THE SECOND SET OF EXPERIMENTS. IF NO VALUE Is GIVEN,
THE OVERALL TASK WAS NOT SUCCESSFULLY COMPLETED

D/N 1 2 3 4 5 6 7 8 10 12

60 317 247 327 395 301 194 113 245
90 123 394 255 271 223 616 178
120 411 766 791 276

150 302 948 315
180 1219 465 2606
210

240 1314 915

TABLE VI

NUMBER OF s-bots THAT ARE PART OF THE PATH FORMED BETWEEN

NEST AND PREY (IF ANY) IN SETUPS (N, D) OF THE SECOND SET OF

EXPERIMENTS. IF NO VALUE IS GIVEN, SUB-TASK path formation WAS
NOT SUCCESSFULLY COMPLETED

D/N 1 2 3 4 5 6 7 8 10 12
60 11 1 1 1 1 1 1 1 1
90 2 2 2 2 2 3 2 2
120 33 3 4 4 4 4 3
150 4 5 5 4 5 5 5
180 5 6 7 6 6 6
210 6 7 7 7
240 9 8

TABLE VII
NUMBER OF s-bots THAT ARE PART OF THE TRANSPORT GROUP WHEN
THE PREY REACHES THE NEST IN SETUPS (N, D) OF THE SECOND
SET OF EXPERIMENTS. IF NO VALUE IS GIVEN, THE OVERALL
TASK WAS NOT SUCCESSFULLY COMPLETED

D/N 1 2 3 4 5 6 7 8 10 12
60 2 4 4 5 2 3 3 3
90 2 2 3 2 2 9 4
120 2 3 3 5
150 4 4 4
180 2 3 2
210
240 3 4

the trial was stopped when seven s-bots were part of a linear
structure that pulled the prey. In such a long structure most
members cannot perceive the path, and thus the prey could not
be moved any more.

Table IV lists the completion times for each of the three
sub-tasks path formation, recruitment, and retrieval. Table V
lists the overall completion time.

In the following, we examine the cooperation within our
robot colonies in more detail. Tables VI and VII detail the sizes
of the two main collaborating elements—the path-forming s-
bots and the transporting s-bots. In particular, Table VI details
the number of s-bots that formed the initial path connecting
nest and prey. Table VII details the number of s-bots that were
part of the transport group when the prey reached the nest.

Fig. 7 shows state diagrams for four selected setups (N, D):
(12, 150), (12,240), (7, 150), and (7,240). In the first three
cases the task was successfully accomplished. In the last case
the system failed as the number of s-bots was too small to
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State diagrams for four selected setups (N, D) from the second set of experiments: (a) (12, 150), (b) (12, 240), (c) (7, 150), and (d) (7, 240). The

respective gray levels indicate the number of s-bots in states search chain, explore chain plus recovery, join chain, assemble, transport target, and transport

blind.

form a path, and thus also too small to accomplish the task.
In the following, the four setups are discussed in more detail.

1) (N,D) = (12,150): All s-bots start in state search
chain. Once the nest has been found, they aggregate
into chains. At ¢t = 78s, a path to the prey consisting of
five chain members is established. Even though a path
to the prey is formed, other s-bots that find the nest
self-organize into an additional chain. Recall that the
information that the path has formed does not spread
within the s-bot group. However, as the s-bots in the
newly formed chain leave this chain with a constant
positive probability, after some time only the chain
forming the path remains. At time ¢ = 134s, the first
s-bot is recruited and assembled with the prey, joined by
a second s-bor 16s later. While the prey is transported
toward the nest, the chain gradually dissolves. During
the transport, additional s-bots try to assemble with
the pulling structure. Two of them succeed, whereas
others fail because the pulling structure is in motion.
By looking at the state diagram in Fig. 7(a), one can
see that some of the s-bots engaged in transport are not
capable of perceiving the path (see white area). Thus,
we have an example where the s-bots exhibit a hierarchy
of teamwork: the group of s-bots that cannot perceive
the path need to interact with the group of s-bots that

2)

can perceive the path, and thereby form a team. This
team, which is composed of all transport s-bots, can be
considered a higher order entity. It forms part of another
team which includes another higher order entity—the
group of s-bots maintaining or decomposing the path.
The team structure is illustrated in Fig. 1. This structure
was observed in all but two trials in which the s-bots
operated in the retrieval phase. In the remaining two
trials all transporting s-bots always perceived the path,
and therefore there was no division of labor within the
transport group.

(N, D) = (12, 240): Fig. 8 shows a sequence of images
taken during this trial. During the path-formation phase,
two chains are formed concurrently [Fig. 8(b)], and it
takes several rearrangements of the chains until at time
t = 335s a path is formed. This path consists of a chain
of eight s-bots [Fig. 8(c)]. Shortly thereafter, two s-bots
get recruited and assemble with the prey [Fig. 8(d)].
During retrieval, the s-bots of the pulling structure lose
sight of the path [see the number of s-bots that are
in state transport blind in Fig. 7(b)], which gradually
dissolves, and the prey is moved in the wrong direction
[Fig. 8(e) and (f)]. However, the path gets re-established
by an s-bot extending the chain in the direction to the
prey [Fig. 8(g)]. As a consequence, the transport resumes
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(a) (b)
(© (d)
(e) ®
(2 (h)

Fig. 8. Sequence of images taken for the trial with group size N = 12 s-bots and distance D = 240 cm between the nest (blue cylindrical object) and the
prey (red cylindrical object): (a) t = Os, (b) t = 140s, (c) t = 348s, (d) t = 480s, (e) t = 708s, (f) t = 770s, (g) t = 810s, and (h) r =915s.

and can be completed [Fig. 8(h)]. This is an example observed in the trials of setups (N, D) = (7, 120) and
of a situation in which teamwork among higher order (8, 120).

entities (such as teams or groups) requires a partici- 3) (N, D) = (7,150): At time ¢+ = 325, a path between
pating entity to adapt its configuration to unexpected nest and prey is already established. At time ¢ = 187s,
environmental circumstances. Similar abilities, involving three s-bots have been recruited and are assembled with
several s-bots helping to reestablish a broken path, were the prey. The four remaining s-bots are aggregated in the
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Fig. 10.  Number of times an s-bot changed its behavioral role (i.e.,

states) during a trial. Data from all s-bots and all trials of the second set
of experiments.

chain, forming the path [see Fig. 7(c)]. During the trans-
port, chain members disaggregate once in the immediate
vicinity of the prey, and follow the path back to the nest
to rest. After some time, the very same s-bots resume
activity, and follow the path, and eventually two of them
assemble with the pulling structure and participate in
transport. This is an example of how the composition
of teams can adapt to changes in the workload of the
underlying sub-tasks. Situations in which collaborating
entities exchange some of their members during task
performance were observed in many trials. For example,
by looking at Tables VI and VII, one can identify five
setups—(N, D) = (4, 60), (6, 120), (7, 150), (10, 90),
and (10, 240)—in which members must have exchanged
between different groups. In these five setups, the overall
group size (N) is smaller than the size of the group that
formed the initial path plus the size of the group of
transporters upon task completion.

4) (N,D) = (7,240): The s-bot group is too small to
form a path. The state diagram [Fig. 7(d)] shows a high
flux between states explore chain (with recovery) and

join chain. At some stages of the trial, all s-bots are
aggregated into chains. However, given that no prey is
found, the chains always dissolve. At some stages only
one s-bot is aggregated into chains. Thus, the system
effectively restarts the search process and can form new
chains into unexplored areas of the environment. The
diagram suggests that the system retains this ability
during the entire trial (i.e., for 25 minutes).

Fig. 9 shows the number of distinct behavioral roles (i.e.,
states) individual s-bots performed during the trials of the
second set of experiments. In 75% of the cases, an s-bot
performed either four or five of the seven roles. This suggests
that the s-bots are indeed interchangeable. Only in 4% of the
cases an s-bot performed less than four behaviors during the
trial. In 15.7% of the cases, an s-bot performed all seven
behaviors.

Fig. 10 shows the number of times an s-bot changes its
behavioral role during the trials of our experiments. The most
frequently observed number of changes in behavior belongs
to the 6-10 changes range. Note, however, that both the mean
and the median number of changes are higher than this range
of values (20.9 and 14.5, respectively).

VI. DISCUSSION

In this paper, we have presented an experimental study
in which a homogeneous colony of autonomous robots has
to solve a complex foraging task. The task requires a range
of sub-tasks to be performed including 1) exploration of the
environment, 2) formation of a path between a prey and a nest,
3) recruitment of nest mates to the prey, 4) self-assembly into
pulling structures, and 5) group transport of the prey back to
the nest.

Due to the limited abilities of the robots, the accomplish-
ment of the task requires:

1) concurrent activity of at least i robots;
2) for i > 2, division of labor (i.e., the robots need to
perform different sub-tasks concurrently),

where i € {2,3,4,5,6,8,9, 10} depends on the experimental
setting. We believe that the task is one of the most complex
tasks addressed by a swarm robotic system to date. Similar
foraging tasks are reported in the literature (e.g., [9], [44],
[45], [68], [77], [79], [82]). However, they typically do not
require any complex division of labor. For example, in some
research the object to be moved can be transported by a
single robot. In other cases, the robots can rely on some form
of global communication or perception (e.g., a strong light
source indicating the goal location), again obviating the need
for division of labor. In general, the problem we investigated
provides a framework that captures the essence of a variety
of problems that are addressed at the collective level in social
insect colonies.

We developed a decentralized control algorithm. Each robot
executes a copy of this algorithm, and thus all robots have
an identical control. The robots do not require any explicit
knowledge of the environment beyond their local perceptual
range. They make little use of memory and follow relatively
simple rules. Overall, one might believe that the members
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of our robot colony are subjected to similar constraints as
individuals of social insect colonies.

A series of experimental results from systematic trials with
up to 12 physical robots confirm the efficacy of the system.®
In almost all of the trials where the group size is sufficient to
accomplish the overall task, the group succeeded in retrieving
the prey to the nest.

One of the mechanisms we identified to be crucial for
the performance of the system is a robot’s ability to recover
from situations in which it is prevented from achieving its
current objective. Such a recovery mechanism was applied
in the behaviors path formation, self-assembly, and (to some
extent) group transport. For path formation, chains of visually
connected robots that do not extend to a prey disaggregate
with some probability and re-aggregate into other directions.
For self-assembly, the recovery mechanism consists of a
simple timeout after which the robot gives up assembling
and moves back to the nest instead. For group transport, a
recovery mechanism allows robots unable to perceive the path
to interact with those robots that are able to perceive the
path. Still, in a few trials the task was not completed because
of some unexpected behavior during the transport phase. A
recovery mechanism allowing suspension of the transport
behavior (e.g., see [47]) might have prevented stagnation in
such circumstances.

The assignment of individual roles to the robots was
context-dependent, and thus changed both in space and
in time. For example, a transporter robot (i.e., a robot
assembled in a pulling structure with the prey) would behave
as a “leader” or as a “follower,” depending on whether it
perceived the path toward the nest or not. An explorer robot
(i.e., a robot moving along a chain of robots) would become
a transporter robot if it encountered the prey and succeeded
in assembling to it; however, it could take another role
under other circumstances. As the assignment of individual
roles was context-dependent, it changed frequently. Still, the
assignment followed static rules (deterministic and stochastic
ones), and as such the system was not adaptive (as opposed,
for example, to systems presented in [49], [55], [65]).

Our study shows that a colony of robots, by self-organizing,
can display a dynamically changing hierarchy of teamwork
(with cooperation occurring also among higher order entities
such as groups and teams). The higher order entities (including
the entire system) proved surprisingly robust with respect to
the inaccurate and sometimes malfunctioning behavior of their
component modules—parts of a robot such as the tracks, entire
robots, and even groups of robots broke down or exhibited
unexpected behavior. In this respect, it is worth noting that
we have conducted our experiments using a physical robotic
system. We believe that by using computer simulations instead,
one would have hardly observed the response of the system
to the range of circumstances described above. Moreover,
by using a physical system we can be certain that our
robots have not only addressed the high level coordination
problems (e.g., to organize into a hierarchy of teamwork),

8A  movie clip, which shows the retrieval of the prey by a
colony of 12 robots, is available as Online supplementary material
at http://ieeexplore.icee.org. Further multimedia material is available at
http://iridia.ulb.ac.be/supp/IridiaSupp2008-015.
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but the low level coordination problems (e.g., grasping and
manipulating objects) as well. A challenge that remains is
to design robotic systems that can cope with more realistic
natural environments.

We believe that our experiments are among the most sophis-
ticated examples of self-organization in robotics to date. The
study shows that complex forms of division of labor can indeed
result from the interactions of individuals that follow relatively
simple and local rules. The study also shows that teamwork
requires neither individual recognition (the robots we use
are interchangeable) nor differences between individuals (the
robots we use are homogeneous in terms of “morphology”
and “brain”). This result might also contribute to the ongoing
debate on the role of these characteristics in the division of
labor in social insects.
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