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21000 Dijon, France

We consider an agent that must choose repeatedly among several actions. Each action has a
certain probability of giving the agent an energy reward, and costs may be associated with
switching between actions. The agent does not know which action has the highest reward
probability, and the probabilities change randomly over time. We study two learning rules
that have been widely used to model decision-making processes in animals—one
deterministic and the other stochastic. In particular, we examine the influence of the rules’
‘learning rate’ on the agent’s energy gain. We compare the performance of each rule with the
best performance attainable when the agent has either full knowledge or no knowledge of the
environment. Over relatively short periods of time, both rules are successful in enabling
agents to exploit their environment. Moreover, under a range of effective learning rates, both
rules are equivalent, and can be expressed by a third rule that requires the agent to select the
action for which the current run of unsuccessful trials is shortest. However, the performance
of both rules is relatively poor over longer periods of time, and under most circumstances no
better than the performance an agent could achieve without knowledge of the environment.
We propose a simple extension to the original rules that enables agents to learn about and
effectively exploit a changing environment for an unlimited period of time.
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1. INTRODUCTION

Decision making is a vitally important process that has
been studied in the context of cognitive science,
economics and animal behaviour. Traditional models
tend to assume that the decision maker is omniscient,
whereas in many real-world situations only limited
knowledge is available.

A classical decision-making problem is the multi-
armed bandit (Robbins 1952). An agent must choose
repeatedly among several actions. Each action has a
certain probability of giving the agent a reward. The
agent does not know which action has the highest
probability. A possible objective is to maximize the
total expected reward obtained over some predeter-
mined time period.

Multi-armed bandits have been widely applied
inthe study of animal behaviour and economics
(Rothschild 1974; Houston et al. 1982; Thomas et al.
1985; Shettleworth & Plowright 1989; Plowright &
Shettleworth 1990; Keasar et al. 2002). Krebs et al.
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(1978), for instance, studied the behaviour of great
tits when faced with two feeding places of different
reward probability. Although finding the optimal
strategy for such a bandit problem can be comput-
ationally demanding, simple learning rules can
perform well (Houston et al. 1982). Many researchers
believe that such simple rules are sufficient to model
decision-making processes in animals. Some evidence
in support of this hypothesis has been obtained in
studies of insects, birds and humans (Regelmann 1984;
March 1996; Keasar et al. 2002; Hutchinson &
Gigerenzer 2005).

As Cohen et al. (2007) point out, ‘real-world
environments are typically non-stationary; i.e. they
change with time.’ This means that various animals
including insects (e.g. Heinrich 1979; Ranta &
Vepsalainen 1981; Wehner et al. 1983) and seabirds
(e.g. Fauchald et al. 2000; Vlietstra 2005) often have to
exploit changing food resources. Motivated by these
examples, we consider a dynamic form of the multi-
armed bandit problem. The probability that an action
results in a reward is no longer assumed to be
stationary. Instead it changes randomly over time.
To perform well, an agent needs to keep on sampling
the environment over the entire time period (e.g. see
J. R. Soc. Interface (2008) 5, 1193–1202
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Harley 1981; McNamara & Houston 1985; Mangel
1990; Krakauer & Rodrı́guez-Gironés 1995; Eliassen
et al. 2007).

A method of updating the estimate of an environ-
mental parameter using a linear operator was originally
proposed by Bush &Mosteller (1955), and forms part of
many models (Kacelnik & Krebs 1985; Regelmann
1986; Kacelnik et al. 1987; Bernstein et al. 1988; Mangel
1990; Greggers & Menzel 1993; Thuijsman et al. 1995;
Beauchamp 2000; Eliassen et al. 2007), including the
Rescorla–Wagner model of conditioning (Rescorla &
Wagner 1972). McNamara & Houston (1987) showed
that a linear operator can be used to estimate an
environmental parameter that changes through time.
Under suitable assumptions, this estimate is a sufficient
statistic in the sense that, given the estimate, other
details of the data are irrelevant. A learning rate
parameter controls the extent to which weight is given
to current observations rather than past observations.
If the probability of reward is changing quickly, the
sufficient statistic gives more weight to the current
reward than if it is changing slowly.

Houston et al. (1982) and Houston & Sumida (1987)
considered two decision rules that make use of such
weighted estimates: MATCH chooses each action with
a probability that is proportional to its estimated value;
IMMAX (hereafter referred to as MAXIMIZE) chooses
the action with the highest estimated value. These two
basic rules (and extensions of them) have been applied
to choice in a range of animals including bees, fishes,
pigeons, rats and starlings (see Houston et al. 1982;
Kacelnik et al. 1987; Beauchamp 2000; Shapiro et al.
2001; Keasar et al. 2002 and references therein).

In this paper, we examine the performance of
MATCH and MAXIMIZE in changing environments.
In particular, we look at the influence of the rules’
learning rate on the total reward obtained. We also
consider the case in which costs are associated with
switching between actions. Such costs could occur, for
instance, when switching between actions requires the
reconfiguration of a machine or travel to another
location. We show that the basic learning rules perform
well for a relatively small number of decisions, but
their performance deteriorates over a long sequence
of decisions precisely because they fail to keep on
sampling. We propose a simple extension to the rules
that maintains the agent’s effectiveness and propensity
to sample regardless of the number of decisions made.
2. METHODS

In the following, we detail the model environment, the
agent’s objective and the decision rules.
2.1. Model environment

We consider an agent that must choose repeatedly
amongM actions. Each action has a certain probability
of giving the agent a reward of unit energy. The reward
probabilities range within f0=K ; 1=K ; 2=K ;.;K=K g,
where K is an integer. At the end of each trial t, the
reward probability of action i, x

ðtÞ
i , changes with

probability h2[0,1] and remains unchanged otherwise.
J. R. Soc. Interface (2008)
In other words,

Prob x
ðtC1Þ
i Z x

ðtÞ
i

� �
Z 1Kh: ð2:1Þ

Changes in the reward probability are in steps of 1/K
and biased towards the centre value 0.5, that is, away
from the extreme values 0 (for which an action would
definitely result in no reward) and 1 (for which an
action would definitely result in a reward). Formally,

Prob x
ðtC1Þ
i Z x

ðtÞ
i K

1

K

� �
Z hx

ðtÞ
i ; ð2:2Þ

Prob x
ðtC1Þ
i Z x

ðtÞ
i C

1

K

� �
Z hð1Kx

ðtÞ
i Þ: ð2:3Þ

We refer to ðx ðtÞ1 ; x
ðtÞ
2 ; x

ðtÞ
3 ;.; x

ðtÞ
M Þ as the state of the

environment at trial t. The initial reward probability
x
ð1Þ
i is set randomly using the steady-state distribution

lim
t/N

Prob x
ðtÞ
i Z

j

K

� �
Z 2KK

K

j

 !
; ð2:4Þ

which can be derived from equations (2.1)–(2.3). Note
that the state of the environment is not affected by the
agent’s behaviour.

An energy cost cR0 is incurred every time the agent
switches action (with respect to the previous trial).

Throughout, the numerical results used to illustrate
the paper are for a model with MZ2 and KZ4 (so two
actions and five potential reward probabilities).

2.2. Agent’s objective

We assume the agent to engage in a sequence ofT trials.
The agent’s objective is to maximize its mean net
energy gain, that is, the mean gross energy gain per trial
minus the mean energy cost per trial (if any).

2.3. Decision rules

We consider rules that let the agent build up, update
and use estimates of the reward probabilities of
different actions. Each estimate is calculated using
a linear operator (Bush & Mosteller 1955). Let L

ðtÞ
i 2

ð0; 1� denote the estimate for action i at the beginning of
trial t. We assume an initial estimate L

ð1Þ
i Z1 for all

actions. At trial t, let the agent have executed action f

and received reward R2{0,1}. The new quality
estimates are calculated as follows:

L
ðtC1Þ
f Z kRCð1KkÞLðtÞ

f ; ð2:5Þ

L
ðtC1Þ
j ZL

ðtÞ
j ; for jsf; ð2:6Þ

where k2(0,1) is the learning rate, controlling the
extent to which the current reward (R) and past
experience (L

ðtÞ
f ) are taken into account (McNamara &

Houston 1987).

MATCH and MAXIMIZE make use of the weighted
estimates as follows (Houston et al. 1982; Houston &
Sumida 1987):

—MATCH. On trial t, the probability of choosing
action i is

L
ðtÞ
iPM

jZ1

L
ðtÞ
j

; ð2:7Þ
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in other words, the probability of choosing each
action is proportional to its estimated reward.

—MAXIMIZE. On trial t, the agent chooses the action
with the maximum estimated value. If more than one
action has the same maximum estimated value, the
agent chooses one of them at random, unless the
previously chosen action (if any) is among them, in
which case the agent does not switch action.
0 10 20 30 40 50
0.50

switching cost (c)

m
ea

Figure 1. Expected mean net energy gain of an omniscient
agent performing an optimal strategy for a sequence of
TZ500 trials. The curves (from the top to the bottom)
represent 1/hZN, 100, 20, 10, 2 and 1, respectively, with 1/h
being the expected number of trials between subsequent
changes in the reward probability. The values represent the
meanoverdifferent initial rewardprobabilities (equation (2.4)).
2.4. Extended rules

We propose a simple extension applicable to both
MATCH and MAXIMIZE. The extended rules (here-
after referred to by MATCH-EXT and MAXIMIZE-
EXT, respectively) differ in the way the estimates for
actions not currently chosen are updated; equation
(2.6) is replaced by

L
ðtC1Þ
j Z l$1Cð1KlÞLðtÞ

j ; for jsf; ð2:8Þ
where l2(0,1) is the recovery rate, controlling the
extent to which a notional reward of 1 and the past
experience (L

ðtÞ
j ) are taken into account. Thus, esti-

mates for actions not currently chosen improve over
time. This helps ensure the agent continues to sample,
regardless of the number of decisions made.
3. RESULTS

3.1. Optimal strategies for uninformed and
omniscient agents

We say an agent is uninformed if it never has any
information about the state of the environment, that is,
the reward probabilities. As a consequence, the agent is
unable to discriminate between actions based on
energetic gain. Regardless of its behaviour, the
expected gross energy gain is then 0.5—the reward
probability for each action fluctuates symmetrically
about this mean value. The optimal strategy is to
choose always the same action. In this case, the
expected net energy gain per trial equals the expected
gross energy gain per trial since there are no switches.

We say an agent is omniscient if it knows all
aspects of the environment (i.e. the current state of
the environment, the probability distribution govern-
ing changes in the state of the environment and the
switching cost, see §2.1). The expected net energy
gain of an optimal strategy can be calculated using
dynamic programming (Houston & McNamara 1999).
The optimal performance depends on the number of
trials (T ), the switching cost (c), and the probability
that the reward probability changes (h). Note that
1/h is the expected number of trials between
subsequent changes in the reward probability of an
action. Figure 1 plots the performance of an omnis-
cient agent using an optimal strategy for time period
TZ500 with MZ2 and KZ4. For cZ0, the best
strategy is to choose always the action with the highest
reward probability; this strategy achieves a per-
formance of 0.6367188 (for any h). For cO0, the
quicker the reward probabilities are expected to
change, the lower is the expected performance of an
optimal strategy.
J. R. Soc. Interface (2008)
3.2. Performance of simple rules

Throughout this paper, we consider the optimal
performance of an uninformed agent, Pu, as a lower
reference, and the optimal performance of an omnis-
cient agent, Po, as an upper bound. The mean gross and
net energy gains we report are both scaled as follows:

Pscaled Z 100
PKPu

PoKPu

: ð3:1Þ

The learning rules we consider let the agents use limited
information about the environment. Consequently,
we expect the agents to perform as well as, or better
than, any uninformed agent (i.e. 0% scaled performance
or more) and as well as, or worse than, omniscient
agents performing an optimal strategy (i.e. 100% scaled
performance or less).

Figures 2 and 3 give typical examples of how the
mean gross energy gain depends on the environmental
parameters T and h for rules MATCH and MAXI-
MIZE, respectively. In the extreme case of a single trial
(TZ1), the outcome is random and does not depend on
the agent’s learning rule. The expected (mean) gross
energy gain is then 0.5 (i.e. 0% scaled performance).
In a sequence of TO1 trials, the agent’s learning rule
can influence the performance. During the initial phase
the performance increases with the number of trials as
the learning rules effectively build up knowledge by
letting the agent explore its environment. After a
certain number of trials, the maximum performance is
reached. In quickly (1/hZ1), moderately (1/hZ10)
and slowly (1/hZ100) fluctuating environments, the
maximum performance is achieved for sequences of
approximately 20, 100 and 200 trials, respectively. If
the number of trials increases further, the scaled
performance of the original learning rules (indicated
by red curves with circles) deteriorates and appears to
converge towards 0%. By contrast, MATCH-EXT and
MAXIMIZE-EXT retain a satisfactory level of per-
formance (see green curves with triangles), as vali-
dated for a billion trials.
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Figure 3. Mean gross energy gain (scaled) for MAXIMIZE
(red curves with circles) and MAXIMIZE-EXT (green curves
with triangles); for details see caption of figure 2. Parameters
used: 1/hZ100, kZ0.1, lZ10K3 (pair of curves on top),
1/hZ10, kZ0.1, lZ10K2 (pair of curves in the middle), and
1/hZ1, kZ0.1, lZ10K1 (pair of curves at the bottom).
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Figure 2. Mean gross energy gain obtained with MATCH (red
curves with circles) and MATCH-EXT (green curves with
triangles) depending on the number of trials (T ) and on the
expected number of trials between subsequent changes in each
action’s reward probability (1/h); values scaled such that 0%
equals the expected performance of uninformed agents under
any behaviour and 100% equals the expected performance of
omniscient agents under optimal performance (for details see
equation (3.1)). Parameters used: 1/hZ100, kZ0.9, lZ10K5

(pair of curves on top), 1/hZ10, kZ0.9, lZ10K3 (pair
of curves in the middle) and 1/hZ1, kZ0.9, lZ10K1 (pair of
curves at the bottom). For each symbol on each curve min
(105, 109/T ) simulations were performed.
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In the following, we evaluate the short-term per-
formance of the original rules, MATCH and MAXI-
MIZE, in more detail. In particular, we examine the
influence of the rules’ learning rate parameter on the
agent’s energy gain, and identify conditions under
which both rules produce identical behaviour. We then
analyse why, if the number of trials increases further,
the performance of the original learning rules deterio-
rates. Moreover, we evaluate the long-term perform-
ance of the original and extended rules in detail.
3.2.1. Short-term performance. Figure 4a shows the
mean gross energy gain of agents using MATCH with
different learning rates k and for different environ-
mental parameters (T and h). Note that by definition
the mean gross energy gain does not depend on the
switching cost c. For every h there is a trial number Th,
such that the expected mean gross energy gain peaks
for simulations with about Th trials, but is worse for
simulations with either much less or much more trials
(e.g. see red curves with circles in figure 2). For T%Th,
the best gross energy gain is achieved under the highest
learning rate that we consider (0.975). We performed
further simulations that indicate that the performance
increases slightly as the learning rate k grows arbitra-
rily close to 1.

Figure 4b shows the corresponding switching rate,
that is, the mean number of times an agent using
MATCH switches action per trial. The mean energy
costs per trial can be calculated as the product of the
switching cost c and the switching rate. In all environ-
ments, the lowest energy costs occur under the highest
learning rate that we consider (0.975). Once again, the
costs decrease slightly as the learning rate k grows arbi-
trarily close to 1. Overall, if the number of trials does
J. R. Soc. Interface (2008)
not exceed Th—that is, the range for which the learning
rule is most effective—learning rates close (but not
equal) to 1 are best in terms of themean net energy gain.
That is, almost all weight should be given to current
observations rather than past experience (see equation
(2.5)). This holds even for environments that are slowly
changing such as on average once every 100 trials.

Figure 5a,b shows respectively the mean gross
energy gain and the switching rate of agents using
MAXIMIZE with different learning rates k and for
different environmental parameters (T and h). During
the initial phase (i.e. until the peak performance is
reached, see also figure 3) the mean gross energy gain is
about equal for almost all learning rates.

In environments that are quickly fluctuating and that
in addition require no or only relatively low costs for
switching, the best net energy gain is achieved under the
lowest learning rate that we consider (0.025). The
corresponding switching rates are high (up to approx.
0.4). We performed further simulations that indicate
that, as the learning rate k decreases arbitrarily close to
0, MAXIMIZE becomes essentially equivalent to WIN
STAY, LOSE SHIFT (Shettleworth 1998). This gives an
intuitive reason why the agent behaves comparatively
well in environments that are quickly fluctuating and in
addition require no or only relatively low costs for
switching. In all other environments, learning rates
kR0.5 seem optimal. In fact, any learning rate kR0.5
produces an identical behaviour that canbecharacterized
by the following new rule (for a proof, see appendix A):

—COUNT. On trial t, the agent chooses the action for
which the current run of unsuccessful trials is shortest.

Formally, let E
ðtÞ
i denote the length of the run of

unsuccessful trials for action i at the beginning of trial t.
E

ð1Þ
i Z0. At trial t, let the agent have executed action f

and received reward R2{0,1}. Then,

E
ðtC1Þ
f Z

E
ðtÞ
f C1 if RZ 0;

0 otherwise;

(
ð3:2Þ
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Figure 5. Short-term performance of agents using MAXIMIZE: (a) mean gross energy gain (scaled); (b) switching rates (i.e. mean
number of switches per trial). Frames are organized as in figure 4.
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Figure 4. Short-term performance of agents using MATCH: (a) mean gross energy gain scaled as follows (see colour legend in top
frame): 0% equals the expected performance of uninformed agents under any behaviour and 100% equals the expected
performance of omniscient agents under optimal behaviour (for details see equation (3.1)); (b) switching rates (i.e. mean number
of switches per trial). The five data frames correspond to 1/hZ1 (i); 2 (ii); 10 (iii); 20 (iv); and 100 (v), i.e. the expected number of
trials between subsequent changes in the reward probabilities of actions. Each frame shows the performance for simulations with
TZ5, 10, 15,., 500 trials (x -axis) and learning rates kZ0.025, 0.05, 0.075,., 0.975 (y-axis); every datum point represents the
mean performance exhibited in [500 000/T ] simulations.
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E
ðtC1Þ
j ZE

ðtÞ
j ; for jsf: ð3:3Þ

Comparing equations (3.2) and (3.3) with equations
(2.5) and (2.6), one can see that MATCH produces the
same behaviour as COUNT, if the learning rate
parameter of MATCH is chosen so that the agent
maximizes its short-term performance (k/1).

In all environments, COUNT is at least as good as
MATCH and MAXIMIZE for minimizing energy costs.
In the short-term (in other words, until the peak
performance is reached), COUNT seems also at least
as good as the other two learning rules for maximizing
the net energy gain (unless the environment is quickly
fluctuating and in addition requires no or only relatively
low costs for switching). As the number of trials
increases, however, other factors become increasingly
important. These are discussed in §3.2.2.
3.2.2. Long-term performance. In the following, we
identify why the performance of agents using MATCH
and MAXIMIZE decreases with the number of trials.
Then, we show that agents using the extended learning
rules overcome this problem.

MATCH and MAXIMIZE. Let us consider an agent
facing an environment with M actions for an unlimited
number of trials. We assume that there exist h1O0,
dO0, such that for every state of the environment at
trial t, the reward probability of each action at trial tC1
is within [d,1Kd] with probability h1 ormore. Our simple
model environment satisfies this condition if KO2 (e.g.
h1ZhM, dZ1/K ).

Let us first consider an agent using MAXIMIZE. Let
us assume MZ2.1 At each trial, the agent chooses an
action with a maximum quality estimate. The quality
estimate of the other action is not better and will not
change at the end of the trial (equation (2.6)).
Consequently,

1Zmin
i

L
ð1Þ
i Rmin

i
L
ð2Þ
i Rmin

i
L
ð3Þ
i R. : ð3:4Þ

Moreover, at any trial t and for any integer F, there is
a positive probability that the agent does not obtain any
reward within trials tC1,tC2,tC3,.,tCF. From
equation (2.5) it follows:

lim
t/N

Efmin
i

L
ðtÞ
i gZ 0: ð3:5Þ

Let us consider an agent that receives a reward at trial
t. From equation (2.5) it follows:

max
i

L
ðtCjÞ
i Okð1KkÞj ; j Z 0; 1; 2;. : ð3:6Þ

A condition for switching at the beginning of trial t is

ð1KkÞmax
i

L
ðtK1Þ
i !min

i
L
ðtK1Þ
i : ð3:7Þ

After a reward at trial t, at least

j Z log1Kk

miniL
ðtÞ
i

k

 !
ð3:8Þ

subsequent trials without a reward are necessary to

switch (equations (3.6) and (3.7)). As mini L
ðtÞ
i is
1The proof can be adapted to the general case of MR2 actions using
mathematical induction.
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expected to converge towards 0, switching becomes less
likely. Consequently, the learning rule loses its respon-
siveness to change. In the asymptotic case, the switching
rate is 0, and the mean net energy gain is 0.5.

Figure 6 gives an example of how mini L
ðtÞ
i changes

through time for 10 independent simulations.
For MATCH the same phenomenon can be observed,

but only for a certain range of k. This range includes
learning rates that are optimal in situations in which the
original learning rule performs best (for details, see the
following section).

MATCH-EXTandMAXIMIZE-EXT.Theextendedrules
differ in the way the estimates for actions not currently
chosen are updated. In environments that change through
time, it is not optimal to assume such estimates to be
constant (equation (2.6)). Instead, the estimates should
gradually improve to prompt the agent to re-evaluate the
corresponding action (equation (2.8)).

In the following, we examine the long-term per-
formance of agents usingMATCH-EXT orMAXIMIZE-
EXT. We let each agent engage in a sequence of TZ107

trials.
Figure 7a shows the mean gross energy gain of agents

using MATCH-EXT for different parameters of the
learning rule (k and l) and the environment (h). For
recovery rate lZ0, the extended learning rule equals the
original learning rule (equations (2.6) and (2.8)): except
fora rangeof small k, theperformanceof anagentdoesnot
exceed the optimal performance of uninformed agents
(see the leftmost data points in the figure). Thus, the
agent fails to exploit the available information. For lO0
and learning rates of approximately 0.975, the agent can
effectively exploit the information. The recovery rate (l)
has a great impact on the performance. The best choice
depends on h: the quicker the reward probabilities of the
actions change, the higher should be the recovery rate, to
prompt the agent to switch more frequently.

Figure 7b shows the switching rate of agents using
MATCH-EXT. The switching rate and thus potential
energy costs are fairly constant across the different
environments (h), but depend on the parameters of the
learning rule (k and l). In general, if an agent is to
minimize its energy costs, it needs to switch with a rate
ez0. Consequently, it cannot respond effectively to
changes in reward probabilities that occur with
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Figure 7. Long-term performance of agents using MATCH-EXT (TZ107 trials): (a) mean gross energy gain scaled as follows (see
colour legend in top frame): 0% equals the expected performance of uninformed agents under any behaviour and 100% equals the
expected performance of omniscient agents under optimal behaviour (for details see equation (3.1)); (b) switching rates (i.e. mean
number of switches per trial). The five data frames correspond to 1/hZ1 (i); 2 (ii); 10 (iii); 20 (iv); and 100 (v), i.e. the expected
number of trials between subsequent changes in the reward probabilities of actions. Each frame shows the performance for
recovery rate lZ0, 10K10, 10K9, 10K8, ., 0.001, 0.002, 0.003, ., 0.05 (x -axis) and learning rate kZ0.025, 0.05, 0.075, ., 0.975
(y-axis). Note that the x -axis is in log scale within the range [10K10, 10K3] (and linearly scaled otherwise).
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probability h[ez0. Thus, if the environment is
changing quickly over a long time period, there must
be a trade-off between maximizing the mean gross
energy gain andminimizing the mean energy costs. This
trade-off can be observed by comparing figure 7a,b.2 If,
however, the environment is changing slowly (see cases
(iv) and (v)), agents using a learning rate of approxi-
mately 0.975 and a recovery rate in the range 10K10 to
10K6 have near-optimal performance in terms of the
mean gross energy gain and the mean net energy gain.

Figure 8a,b shows respectively the mean gross energy
gain and the switching rate of agents using MAXIMIZE-
EXT. As for MAXIMIZE, the mean gross energy gain is
equally high for a large range of learning rates (if the
recovery rate is chosen accordingly). In slowly fluctua-
ting environments, the optimal learning rate is approxi-
mately 0.25.

The actual switching rate is slightly higher in quickly
fluctuating environments than in slowly fluctuating
environments. However, it may not always be high
enough. In this respect, the recovery rate (l) should be
selected according to the environmental parameter h:
the quicker changes in the reward probabilities of actions
occur, the higher should be the recovery rate, to prompt
agents to switch more frequently.

Once again, if the environment is changing quickly
over a long time period, we observe a trade-off between
maximizing the mean gross energy gain and minimizing
themean energy costs (see cases (i) and (ii) in figure 8a,b).
If, however, the environment is changing slowly (see cases
(iv) and (v)), agents using a learning rate of approxi-
mately 0.25 and a recovery rate in the range 10K3 to 10K2

have near-optimal performance in terms of themean gross
energy gain and the mean net energy gain.
4. DISCUSSION

Bayesian theory (e.g. McNamara & Houston 1980;
McNamara et al. 2006) provides a basis for determining
the optimal use of information. Although exact appli-
cation of this theory may involve complex calculations,
animals may be able to perform nearly as well by
following simple rules (e.g. McNamara & Houston 1980;
Harley 1981; Houston et al. 1982). We examined the
performance of two simple learning rules that are widely
applied in models of foraging behaviour in the biological
literature. In particular, we studied to what extent the
rules can let an agent learn about which action to choose
in a sequence of trials. Each action gives the agent a
reward with a certain probability that changes through
time. We also considered the case in which costs are
associated with switching between actions. To assess the
extent to which the agent learns about its environment
based on the limited information that is available, we
compared the agent’s performance with the optimal
performance of (i) uninformed agents, in other words,
agents that never have any information about their
environment (not even about the rewards obtained), and
2By carefully examining cases (i) and (ii), one can see that the best
recovery rate to minimize costs is in the range 10K10 to 10K6, while
the best recovery rate to maximize the gross energy gain is in the range
10K4 to 10K2.
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of (ii) omniscient agents, in other words, agents that
have complete knowledge of their environment (the
current reward probabilities and the mathematical
model of how they change through time).

Over a relatively short period of time (i.e. involving
between approximately 1 and 20 changes in the reward
probabilities of each action), the two learning rules
(MATCH and MAXIMIZE) allow an agent to perform
reasonably well and thus to respond effectively to
changes in its environment at moderate costs (figures
2–5). For MATCH, we observed that, regardless of how
frequently changes occur in the reward probabilities, the
agent’s learning mechanism should be such that almost
all weight is given to current observations rather than
past experience (see figure 4). At first glance, this result
seems counter-intuitive, as a good estimate of a slowly
changing probability of reward would require most
weight to be given to past experience (McNamara &
Houston 1987). However, due to the probabilistic nature
of MATCH—that is, choose each action with a
probability that is proportional to its estimated
value—learning rates that help build up good estimates
of the actual reward probabilities are unfavourable. By
contrast, the learning rate should help inflate differences
in the actual reward probabilities. The only way to do so
is to give almost all weight to current observations rather
than past experience. As the learning rate k grows
arbitrarily close to 1, such inflation gets so strong that
MATCH chooses almost exclusively the biggest value.
For these ‘optimal’ learning rates, MATCH and
MAXIMIZE behave identically (see figures 4 and 5).
Further analysis revealed that for these learning rates
both rules can be characterized by a new rule that only
requires the agent to choose the action for which the
current run of unsuccessful trials is shortest. This new
rule would require a counting operator rather than a
linear operator. Some studies have investigated such
counting operators as potential rules that animals might
follow in the context of foraging (e.g. see Lima 1984;
Gallistel 1990; Shettleworth 1998; Franks et al. 2006 and
references therein).

Over a long period of time, the performance of both
learning ruleswas poor, andundermost circumstances the
performance was not better than the optimal performance
of uninformed agents (figures 2 and 3). The larger value of

L
ðtÞ
i repeatedly takes values k$1Cð1KkÞLðtK1Þ

i Rk each
time the current action results in a success, while the
smaller value of L

ðtÞ
i tends to 0. Thus, it takes longer

and longer for the larger value to decrease to the smaller
value, and so longer and longer for a switch to occur.
Consequently, the agent is not capable of responding to
changes in reward probabilities at a constant speed.

Harley (1981) assumes that not choosing an action is
equivalent to choosing it and getting no reward (what
Kacelnik et al. (1987) call the ‘pessimistic’ assumption).
By contrast, we assume that there is no change in
the estimates for actions not currently chosen. This
assumption is made in models based on the Rescorla–
Wagner equation, e.g. Montague et al. (1995), Shapiro
(2000), Shapiro et al. (2001) and Keasar et al. (2002), and
in the model of Frischknecht (1996). The simulations
carried out by Kacelnik et al. suggest that rules
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incorporating the pessimistic assumption do not provide a
good account of data on choicewhen rewards are no longer
available.

We proposed a simple extension to the original
learning rules that maintains the agent’s effectiveness
at a moderate cost, regardless of the number of decisions
made. The extended rules differ in the way the estimates
for actions not currently chosen are updated. In
environments that change through time, it is not optimal
to assume such estimates to be constant. Instead, the
estimates should gradually improve to prompt the agent
to re-evaluate the corresponding action. The effect of this
is clearly visible in figures 7 and 8 when comparing
the long-term performance for recovery rate lZ0 (i.e. for
the original rules) and recovery rates lO0 (i.e. for the
extended rules). It is worth noting that this recovery
mechanism is just one of many possible mechanisms to
maintain an agent’s responsiveness over time. We also
investigated an alternative mechanism that lets an agent
at any trial switch action with a constant probability (or
when the rules require it to do so). However, such a
sampling mechanism caused the agent to perform worse
than the recovery mechanism we discuss in this paper;
presumably because the switching is just imposed and
thus is not responsive to the outcome.

We expect that the increase in the long-term
performance of the extended rules comes at the cost of
a decrease in short-term performance. However, effective
recovery rates are relatively small and thus have little
impact if the number of trials is relatively small. In fact,
it can be seen in figures 2 and 3 that the performance of
the extended rules is fairly similar to the original rules in
the short term.

Severalprevious studies, e.g.Harley (1981),Regelmann
(1984), Bernstein et al. (1988, 1991) and Beauchamp
(2000), have investigated the performance of rules when
agents compete for food. In some cases the distribution of
agents corresponds to an ideal free distribution (see
Milinski & Parker (1991) for a review of ideal free
distributions), but departures have been noted if
depletion is strong (Bernstein et al. 1988) or if the cost
of travel is large (Bernstein et al. 1991). Many of these
studies do not consider random changes in environ-
mental parameters. By contrast, the resources that
animals exploit will often vary in space and time, e.g.
Heinrich (1979), Deneubourg et al. (1983), Mangel
(1994), Fauchald et al. (2000) and Estes et al. (2003).
The bandit problem that we have investigated provides
a framework that captures the essence of exploiting such
environments. We have shown that, after a long time,
the performance of two previously used learning rules
starts to deteriorate. Previous studies have tended not
to combine changing environments with many trials,
and hence would not have encountered the decrease in
performance that we have described. Are our time
periods too long to be biologically relevant? There are
approximately 600 000 s in a week and 30 000 000 s in a
year. An animal making a decision every 6 s wouldmake
over 7000 decisions in 12 hours. Even given quite low
rates of change in the environment, such an animal
would be likely to suffer a loss if it followed the
unmodified learning rules that we have analysed.
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APPENDIX A

Lemma 1. MAXIMIZE produces the same behaviour as
COUNT, for any learning rate 0.5 %k!1.

Proof. Without loss of generality, we assume E
ðtÞ
1 Za,

E
ðtÞ
2 ZaCb, aR0, and bO0.
Since k!1 it follows that L1 and L2 are strictly

positive at each time point.
For action 1, it follows from equation (2.5) and L

ð1Þ
1 Z1

that the value of L1 just prior to the run of a unsuccessful
trials is strictly greater than k (if the previous trial on
action 1 was successful) and at most 1 (if there were no
previous successful trials on action 1).

Thus, after the a unsuccessful trials, it follows again

from equation (2.5) that ð1KkÞak!L
ðtÞ
1 %ð1KkÞa.

A similar argument for action 2 implies ð1KkÞaCb

k!L
ðtÞ
2 %ð1KkÞaCb.

But ð1KkÞaCbZð1KkÞað1KkÞb%ð1KkÞað1KkÞ%
ð1KkÞak for 0:5%k!1.

Thus L
ðtÞ
2 !L

ðtÞ
1 .
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