
A Coevolutionary Approach to Learn Animal Behavior
Through Controlled Interaction

Wei Li
Department of Automatic

Control and Systems
Engineering

The University of Sheffield, UK
wei.li11@sheffield.ac.uk

Melvin Gauci
Department of Automatic

Control and Systems
Engineering

The University of Sheffield, UK
m.gauci@sheffield.ac.uk

Roderich Groß
Department of Automatic

Control and Systems
Engineering

The University of Sheffield, UK
r.gross@sheffield.ac.uk

ABSTRACT

This paper proposes a method that allows a machine to infer
the behavior of an animal in a fully automatic way. In princi-
ple, the machine does not need any prior information about
the behavior. It is able to modify the environmental condi-
tions and observe the animal; therefore it can learn about the
animal through controlled interaction. Using a competitive
coevolutionary approach, the machine concurrently evolves
animats, that is, models to approximate the animal, as well
as classifiers to discriminate between animal and animat.
We present a proof-of-concept study conducted in computer
simulation that shows the feasibility of the approach. More-
over, we show that the machine learns significantly better
through interaction with the animal than through passive
observation. We discuss the merits and limitations of the
approach and outline potential future directions.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Knowledge ac-
quisition; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods; I.2.9
[Artificial Intelligence]: Robotics—Autonomous vehicles

Keywords

Science automation; animal behavior; coevolution; Turing
test; evolutionary robotics; interaction; artificial life

1. INTRODUCTION
The scientific study of animal behavior—ethology—has

been pursued for centuries [2]. The most widely used ap-
proach to infer the behavior of an animal is through obser-
vation. The animals under observation can be studied in
either uncontrolled or controlled environmental conditions.
If the conditions are not controlled, such as observing the
animal in its natural habitat, it can be difficult to infer how
the behavior is influenced by the stimuli provided by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

environment. On the other hand, the problem of how to
control the environmental conditions in a meaningful way is
difficult, which is therefore solved by humans in the majority
of cases.

Recent developments in science automation suggest that
machines could autonomously conduct scientific investiga-
tion [7]. Inspired by this idea, we propose a new approach
to learning about animal behavior. Our method allows a
machine to infer the behavior of an animal in a fully au-
tonomous way. In particular, it should be able to predict
any observable action of the animal. Our assumptions are:

• The machine can observe the animal’s actions. This
paper focuses on the animal’s displacement in space
and assumes that it is possible to track the position of
the animal at discrete steps in time.

• The machine is capable of simulating any relevant ac-
tions of the animal. In this paper, this constitutes
being able to produce arbitrary sequences of numbers
(coordinates in space).

• The machine must be able to control the environmental
conditions throughout the experiment. In this paper,
we focus on the intensity of the ambient light.

Our approach uses a coevolutionary algorithm comprised
of two populations. The first population contains the ani-
mats, hereafter also referred to as models. The second pop-
ulation contains classifiers. The populations co-evolve com-
petitively. The fitness of the classifiers depends solely on
their ability to distinguish the behavior of the animats from
the behavior of the animal under investigation. The fitness
of the models depends solely on their ability to mislead the
classifiers into making the wrong judgement, that is, classi-
fying them as the animal.

In principle, our approach does not require any prior knowl-
edge about the animal. It is not even necessary to iden-
tify how to gauge the differences between animals and an-
imats. Interestingly, the approach could therefore be used
to learn what constitutes human behavior in general, by
letting the machine interact with a large number of hu-
mans. As a result, the models could potentially pass the
Turing test [17]. Moreover, the classifiers could serve as
Reverse Turing tests—enabling machines to distinguish be-
tween artificial and human behavior. This capability would
be of wide interest. The “Completely Automated Public
Turing test to tell Computers and Humans Apart” system
(CAPTCHA) [9], for example, is widely used in Internet
security.

223

This paper is organized as follows. Sec. 2 presents related
work. Sec. 3 presents the methodology used, including the
simulated animal behavior and the proposed coevolutionary
algorithm. A proof-of-concept study, conducted in computer
simulations, is presented in Sec. 4. Sec. 5 concludes the
paper.

2. RELATED WORK

2.1 The Development of Science Automation
The field of science automation has been developed to

a great extent because of the increasing demands of drug
industry and relevant fields of biology and chemistry. Us-
ing high-throughput screening [14] technology, for example,
one can automatically analyze a large number of potential
drug candidates, which allows researchers to do thousands
of pharmacological, biological and chemical experiments in
a short time. According to Schmidhuber [15], by 2040, ma-
chines will be sufficiently ‘intelligent’ to make scientists re-
dundant. King et al. [18, 10], for example, developed Adam,
a robot scientist that could automatically generate func-
tional genomics hypotheses about the yeast Saccharomyces
cerevisiae and carry out experiments to test and refine hy-
potheses. Different from this work, our approach is not spe-
cific to any particular types of organisms.

In the system identification area, Gauld et al. [8] devel-
oped DAISY, a system to identify biological species auto-
matically with high accuracy using advanced image process-
ing techniques. MacLeod et al. [12] report that an imaging
system that was originally designed for identifying marine
zooplankton was used by the US government for monitoring
horizon oil spill in deep waters. They argue that taxonomists
and researchers in machine learning, pattern recognition as
well as artificial intelligence should collaborate with each
other in order to improve automation in taxonomic identifi-
cation.

2.2 System Identification through Coevolution-
ary Algorithms

In the last decade, a number of works considered coevolu-
tionary approaches to system identification (e.g. [11, 13]). In
[4], Bongard and Lipson present a nonlinear system identifi-
cation method called estimation-exploration algorithm, which
co-evolves tests and models in a way that minimizes the
amount of tests (in this study performed in simulation). In
one of the scenarios, the models, composed of 17 parame-
ters, have to approximate a mobile robot that gets damaged.
One difficulty of the approach is that it requires a metric to
estimate the differences between the models and the robot.
In [3], “the observation was made that in many cases the sim-
ulated robot would exhibit wildly different behaviors even
when it very closely approximated the damaged ’physical’
robot. This result is not surprising due to the fact that the
robot is a highly coupled, non-linear system: thus similar
initial conditions [...] are expected to rapidly diverge in be-
havior over time”. Bongard and Lipson address this problem
using a more refined comparison metric reported in [3]. The
novelty of our work is that it does not require any pre-defined
metrics. Rather, the classifier learns to distinguish between
the animal and model. Moreover, our approach allows the
classifier to interact with the environment, by determining
the experimental conditions on the fly in response to the
observed behavior.

0.1 0.9
Light intensity

Speed

0.5

- 0.5

0
1.0

Figure 1: The speed of the animal as a function of
the light intensity in its environment.

Table 1: This table shows the factor by which the
animal’s ‘base’ speed (shown in Fig. 1) is multiplied,
for an example state sequence.

state M L H H L L L H H

factor 1 1 1 α1 1 α1 α2
1 1 α2

L L H H L L L L M H H

1 α2 1 α3 1 α3 α2
3 α3

3 1 1 1

Bongard et al. [5] study the problem how a robot can in-
fer its own morphology through a process of continuous self-
modeling. The approach generates test candidates as well
as actions that lead to a maximum disagreement among the
models. This greatly helps to minimize the number of tests
performed on the real robot. The approach is not applica-
ble to our scenario, as it is not in general possible to make
the animal execute arbitrary instructions on demand. The
approach described in [16], where the authors infer physical
laws from observing mechanical systems, would also be ap-
plicable to learn about the behavior of an animal. Different
from this approach our system learns about the behavior not
through passive observation, but rather through an interac-
tive process.

3. METHODOLOGY
This section describes the setup used in this paper to il-

lustrate the ideas presented earlier. Sec. 3.1 presents the
simulated animal behavior to be identified. Sec. 3.2 details
the coevolutionary approach and its implementation.

3.1 Simulated Animal Behavior
The behavior to be identified was chosen to serve as a

tractable test-bed for our approach; while it may loosely
correspond to how some real animals react to the light in-
tensity in their environment, it is not intended to mimic
any specific animal. In this behavior, non-trivial interaction
with the animal is critical for leading the animal to reveal a
subsection of its behavioral repertoire.

We simulate a one-dimensional environment in continu-

224

ous space. The simulation advances in discrete time steps
t ∈ {0, 1, 2, . . . }. The (ambient) light intensity in the envi-
ronment, I, can be varied continuously between 0 and 1.
The animal distinguishes between three levels of light in-

tensity, low (0 ≤ I < IL), medium (IL ≤ I ≤ IH), and high
(IH < I ≤ 1), with each level corresponding to a state of
the animal. Hereafter, these states will be referred to as L,
M , and H.
If the animal is in state M at time t, its speed, s(t) ∈ R,

varies linearly with I(t) as:

s(t) = k
(

I(t) − 0.5
)

, (1)

where k is a constant.
If the animal is in state L, its behavior depends on the

number of H to L transitions that had occurred since it
has last been in state M (or since t = 0, if the animal has
never been in state M). If no transitions had occurred, then
the speed of the animal is k (IL − 0.5), and remains that
way for as long as the animal remains in state L. If one H
to L transition had occurred, then the speed of the animal
decays exponentially with a rate α1 for every time step that
the animal remains in state L. Hence, in the first time step
that the animal is in state L, the speed is k (IL − 0.5); then,
it changes to α1k (IL − 0.5), α2

1k (IL − 0.5), and so on. If
two H to L transitions had occurred since it has last been
in state M (or since t = 0, if the animal has never been in
state M), then the rate is α2; if three or more transitions
had occurred, then the rate is α3.
The behavior of the animal in state H is analogous to

that in state L. The possible exponential change rates are
also α1, α2 and α3; however, which one of these applies
now depends on the number of L to H transitions that had
occurred since the last M state.
Table 1 shows an example state sequence for the animal,

along with the factor by which the animal’s ‘base’ speed (i.e.,
the speed shown in Fig. 1) is multiplied in each time step.

Here, IL and IH are set to 0.1 and 0.9 respectively, k is
set to 1.25; hence, the lower and the upper saturation values
of the speed are k (IL − 0.5) = −0.5 and k (IH − 0.5) = 0.5.
The exponential rates of change are set to: α1 = 0.8, α2 =
0.4, α3 = 0.2. Thus, in each case, the animal’s speed decays
exponentially towards zero.

3.2 Coevolutionary Approach and Implemen-
tation

The coevolutionary algorithm is comprised of two popula-
tions — one of models, and one of classifiers — that co-evolve
with each other competitively.

The fitness of the classifiers depends solely on their ability
to distinguish the behavior of the models from the behavior
of the ‘real’ animal, described in Sec. 3.1. The fitness of the
models depends solely on their ability to mislead the classi-
fiers into making the wrong judgement, that is, classifying
them as the ‘real’ animal.

3.2.1 Model Structure
In this paper, both animal and model share the same

structure. The task is thus to estimate parameters k, α1,
α2, and α3, as described in Sec. 3.1. As a consequence of
this choice, it is simple to gauge the quality of the models
obtained (as discussed in the results section). It is worth
mentioning that the fitness of the models solely depends on
the performance of the classifiers, and that the latter do not

s b1

b2

O2O1

I

Figure 2: The structure of the classifiers is a recur-
rent Elman neural network with two inputs, three
hidden neurons, and two output neurons. See the
text for details.

have any knowledge about the model structure or parame-
ters.

3.2.2 Classifier Structure
The structure of the classifiers is a recurrent Elman neu-

ral network [6] with two inputs, three hidden neurons, and
two output neurons (see Fig. 2). The network has a total
of 26 parameters, which can all assume values in R. The
activation function used in the hidden and the output neu-
rons is the logistic sigmoid, which has the range (0, 1) and
is defined as sig (·) = 1/ (1 + exp (− (·))).

One of the inputs to the network is the light intensity in
the environment at time step t, I(t) ∈ [0, 1], while the other
input is the speed s(t).

In order to make a judgement between a model and the
‘real’ animal, the network observes the behavior of the ani-
mal (speed) over a period of time; here 10 s at 0.1 s intervals
for a total of T = 100 time steps. In addition, the network
is also in control of the light intensity in the animal’s envi-
ronment. At time t = 0, the value of the light intensity is
chosen randomly with a uniform distribution in the range
[0, 1]. The neural network is then updated, using I(0) and
s(t). The value of the light intensity for the next time step
is obtained from the neural network’s output neuron O1,
and the process repeats. After having iterated through all
the time steps, the final value of output neuron O2 is used
to make a judgement: the network decides on a model if
O2 < 0.5, and on the real animal if O2 ≥ 0.5.

3.2.3 Optimization Algorithm
The algorithm used here is based on a (µ + λ) evolution

strategy with self-adaptive mutation strengths [1], and can
be thought of as consisting of two sub-algorithms — one
for the models, and another for the classifiers — which are
identical, and do not interact with each other except for the
fitness calculation step (described later in Sec. 3.2.4).

In this algorithm, an individual is a 2-tuple, a = (x,σ),
where x ∈ R

n represents objective parameters, and σ ∈
(0,∞)n represents mutation strengths. The i-th mutation
strength in σ corresponds to the i-th element in x. For the
model sub-algorithm, n = 4, for the classifier sub-algorithm,
n = 26.

Each generation g comprises a population of µ = 50 indi-

225

viduals:

P(g) =
{

a(g)
1 ,a(g)

2 , . . . ,a(g)
µ

}

.

In the population of the first generation, P(0), all the ob-
jective parameters are initialized to 0.0 and all the mu-
tation strengths are initialized to 1.0. Thereafter, in ev-
ery generation g, the µ parent individuals are first used
to create λ = 50 offspring individuals by recombination.
For the generation of each recombined individual a′(g)

k , k ∈
{1, 2, . . . ,λ}, two individuals are chosen randomly, with re-

placement, from the parent population: a(g)
χ and a(g)

ψ , where
χ,ψ ∈ {1, 2, . . . , µ}. Discrete and intermediary recombina-
tion are then used to generate the objective parameters and
the mutation strengths of the recombined individual, respec-
tively:

x′(g)
k,i = x(g)

χ,i OR x(g)
ψ,i, (2)

σ′(g)
k,i =

(

σ(g)
χ,i + σ(g)

ψ,i

)

/2, (3)

where i ∈ {1, 2, . . . , n} is indexing the elements within the
vectors and, in Eq. 2, the selection is performed randomly
and with equal probability.

Each of the λ recombined individuals is then mutated in
order to obtain the final offspring population, P ′′(g). This is
done according to:

σ′′(g)
k,i = σ′(g)

k,i exp
(

τ ′Nk (0, 1) + τNk,i (0, 1)
)

, (4)

x′′(g)
k,i = x′(g)

k,i + σ′′(g)
k,i Nk,i (0, 1) , (5)

for all {k, i}, where k ∈ {1, 2, . . . ,λ} is indexing the individ-
uals within the population and i ∈ {1, 2, . . . , n} is indexing
the elements within the vectors. Eq. 4 generates the per-
turbed mutation strength from the original one according to
a log-normal distribution. Eq. 5 mutates the objective pa-
rameter according to a normal distribution having the per-
turbed mutation strength as its variance. In Eq. 4, Nk (0, 1)
and Nk,i (0, 1) are both random numbers generated from a
standard normal distribution; however, the former is gener-
ated once for each individual (i.e. for each value of k), while
the latter is generated separately for each element within
each individual (i.e. for each combination of k and i). The
parameters τ ′ and τ determine the learning rates of the mu-
tation strengths, and are set as τ ′ = 1/2

√
2n, τ = 1/2

√

2
√
n

(similar to [19]).
Once the offspring population has been generated, the µ

individuals with the highest fitness (see Sec. 3.2.4) from the
combined population, P(g) ∪ P ′′(g) (which contains µ + λ
individuals), are selected as the parents to form the popu-
lation of the next generation, P(g+1). Individuals with an
equal fitness have an equal chance of being selected.

3.2.4 Fitness Calculation
The fitness of each model is obtained by evaluating it with

each of the classifiers in the competing population (100 in
total). For every classifier that wrongly judges the model as
being the real animal, the model’s fitness increases by one.
Therefore, in the end, the model obtains a fitness in the set
{0, 1, 2, . . . , 100}.

The fitness of each classifier is obtained by using it to
evaluate (i) each model in the competing population (100
in total) once, and (ii) the real animal 100 times. For each

correct judgement, the classifier’s fitness increases by one,
for a final fitness in the set {0, 1, 2, . . . , 200}.

4. RESULTS

4.1 Coevolutionary Runs without and with
Noise

We performed 100 coevolutionary runs using the setup
described in Sec. 3. This setup, in which the classifier is in
control of the light intensity in the animal’s environment,
is hereafter referred to as the “interactive” setup. In order
to validate the advantages of the interactive approach, we
compared it against the situation where the classifier only
observes the animal passively. We considered two such se-
tups: in the first setup (hereafter, “passive 1”) the light in-
tensity changes randomly, following a uniform distribution
in [0, 1], in every time step. In the second setup (hereafter,
“passive 2”), the intensity changes randomly every ten time
steps. All other aspects of these two setups are identical
to the “interactive” setup. Another 100 coevolutions were
performed for each of the two passive setups.

In addition, we considered the situation where both the
animal and the learning system are affected by noise. Each
of the three setups was tested by performing another 100
coevolutionary runs. The light intensity perceived by the
animal is obtained by multiplying the real intensity by a ran-
dom number generated uniformly in [0.95, 1.05], and capping
the perceived intensity to 1 if it exceeds this value. Noise is
also applied to the speed of the animal by multiplying the
original speed with a random number generated uniformly
in [0.95, 1.05]. In order to make this setup more feasible to
implement, it is assumed that the system cannot directly
measure the speed of the animal, but rather its position.
Noise on the position is applied by adding a random num-
ber generated from normal distribution N (0, 0.005). The
speed of the animal for the classifier’s input is then calcu-
lated by subtracting the previous estimated position from
the current estimated position.

4.2 Analysis of the Evolved Models and Clas-
sifiers

Fig. 3 shows a box plot1 with the distributions of the best
evolved parameters in the 1000th generation of the three
coevolutionary setups, for the cases (a) without and (b) with
noise.

The passive coevolutions are able to evolve the parameters
k and α1; however, they are not able to evolve α2 and α3.
If the light intensity changes randomly, it is highly unlikely
that the transitions L to H and/or H to L occur enough
times, without an M state in between, such that the clas-
sifiers can observe the effects of α2 and α3. Therefore, the
classifiers are not capable of distinguishing the behavior of
models from the behavior of the real animal with respect to
these two parameters, and in turn, these parameters do not
converge to their true value in the model population.

1The box plots presented here are all as follows. The line
inside the box represents the median of the data. The edges
of the box represent the lower and the upper quartiles (25-
th and 75-th percentiles) of the data, while the whiskers
represent the lowest and the highest data points that are
within 1.5 times the inter-quartile range from the lower and
the upper quartiles, respectively. Circles represent outliers.

226

1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

index of model parameters

va
lu

e
of

 m
od

el
 p

ar
am

et
er

s

interactive
passive 1
passive 2

(a) without noise

1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

index of model parameters

va
lu

e
of

 m
od

el
 p

ar
am

et
er

s

interactive
passive 1
passive 2

(b) with noise

Figure 3: This plots shows the distributions of the
best evolved parameters in the 1000th generation in
the coevolutions. Parameters 1 through 4 corre-
spond to k, α1, α2 and α3, respectively. The true
values are k = 1.25, α1 = 0.8, α2 = 0.4 and α3 = 0.2.
Each box corresponds to 100 coevolutionary runs.
Note that in order to zoom in on the relevant range,
some boxes and outliers are omitted from the plot.

In contrast to the passive coevolutions, the interactive co-
evolution can evolve all four parameters reasonably accu-
rately, in both the noiseless and the noisy cases. The effect
of the noise is to widen the distribution of the evolved pa-
rameters across the 100 coevolutionary runs; however, the
median values of the evolved parameters are still very close
to the true values. Interestingly, the interactive coevolution
does not seem to learn α2 and α3 significantly worse than
it does k and α1. This implies that, by the 1000th genera-
tion, the classifiers have learned how to control the pattern
of the light intensity in such a way that they can distinguish
models from the ‘real’ animal from the effect of any of the
parameters.

To analyze the behavior of the evolved classifiers, the best
evolved classifier from the last generation of a randomly-
chosen interactive coevolutionary run without noise was post-
evaluated. Fig. 4 shows, over 100 time steps (as used in the
coevolution), the pattern of the light intensity set by the

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

time step

va
lu

e
of

 li
gh

t i
nt

en
si

ty
/s

pe
ed

light intensity
speed

Figure 4: A post-evaluation with the best evolved
classifier in the last generation of one of the interac-
tive coevolutionary runs without noise.

classifier and the corresponding speed of the animal. Ini-
tially, the classifier outputs a sequence alternating between
L and H, which means that by the 20th time step, it has
already observed all four parameters. The light intensity
then remains in an L state until around the 70th time step.
Interestingly, the classifier now once again makes the light
intensity alternate between L and H, which means that it
observes the effect of all four parameters for a second time.
This repetition may make the classifier more robust in de-
termining whether the behavior it is observing is that of a
model or the ‘real’ animal.

4.3 Coevolutionary Dynamics
Fig. 5 shows the dynamics of the coevolutionary algo-

rithms for the cases (a) without and (b) with noise. The
horizontal axis shows the generation, while the vertical axis
shows the total square error of the model parameters, i.e.
the sum of the square differences of the four parameters (of
the best individual in each generation) from their true val-
ues.

In the case of the interactive coevolution, the error quickly
starts to reduce after around the 100th generation, and drops
to below 1.0 by the 200th generation, for both the noiseless
and the noisy cases. In the noiseless case, the error keeps
improving until the last generation; in contrast, in the noisy
case, the error stops improving substantially after around
the 400th generation. In the case of the passive coevolu-
tions, not only does the error not decrease, but it increases,
such that the median error approaches 1010 by the 1000th

generation.
In order to analyze why the interactive coevolution is suc-

cessful while the passive ones are not, we can look at the
dynamics of the subjective fitnesses of the classifiers and
the models (as defined in Sec. 3.2.4) during the course of
the coevolution. As the passive coevolutions fail to converge
even in the noiseless case, it is sufficient to analyze the fit-
ness dynamics only for this case, for the sake of simplicity.
Fig. 6 shows the fitness dynamics of the interactive and the
passive 1 coevolutions. In the case of the interactive coevolu-
tion, the average fitness of the classifiers starts off at around
0.5, which means that the classifiers make decisions that are
no better than random decisions. However, the classifiers

227

1 200 400 600 800 1000
10-10

10-5

100

105

1010

1015

generation

to
ta

l s
qu

ar
e

er
ro

r (
lo

g
sc

al
e)

interactive
passive 1
passive 2

(a) without noise

1 200 400 600 800 1000
10-10

10-5

100

105

1010

1015

generation

to
ta

l s
qu

ar
e

er
ro

r (
lo

g
sc

al
e)

interactive
passive 1
passive 2

(b) with noise

Figure 5: This plot shows the convergence of the
coevolutionary algorithms with and without noise.
The horizontal axis represents the generation, while
the vertical axis represents the total square error in
the parameters of the best model in each generation.
Each box corresponds to 100 coevolutionary runs,
and the solid lines correspond to the median error.

quickly improve in fitness, which in turn causes the fitness
of the models to decrease. This increases the selective pres-
sure on the models. In the case of the passive 1 coevolution,
the average fitness of the classifiers also starts off at around
0.5. In the first few generations, this increases slightly, be-
cause the classifiers learn how to distinguish models from the
‘real’ animal on the basis of parameters k and α1. However,
the models quickly adapt to this new ability of the classi-
fiers. Now, as the classifiers are very unlikely to have the
opportunity to observe the effects of α3 and α4, their av-
erage fitness returns to 0.5. This leads to a disengagement
phenomenon, in which there is no more meaningful selection
in the model population, leading their error to drift.

We also wish to analyze how the four individual parame-
ters evolve during the course of the only successful coevolu-
tionary setup, i.e. the interactive coevolution. For simplic-
ity, we consider only the noiseless case, which is shown in
Fig. 7. This plot reveals how learning proceeds in the coevo-
lution. Parameter k is the first to be learnt, followed closely

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

fit
ne

ss
 v

al
ue

 (n
or

m
al

iz
ed

)

generation

best fitness of classifiers
best fitness of models
average fitness of classifiers
average fitness of models

(a) interactive coevolution (without noise)

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

fit
ne

ss
 v

al
ue

 (n
or

m
al

iz
ed

)

generation

best fitness of classifiers
best fitness of models
average fitness of classifiers
average fitness of models

(b) passive 1 coevolution (without noise)

Figure 6: This plot shows the normalized fitness of
the classifiers and the models in (a) the interactive
coevolution, and (b) the passive 1 coevolution. The
curves show the average fitness across 100 coevolu-
tionary runs.

by α1, while parameters α2 and α3 take a longer time to
converge to the true values. This means that the classifiers
first learn to distinguish models from the ‘real’ animal on
the basis of k and α1. This ability of the classifiers drives
the model population to rid itself of models that are differ-
ent to the ‘real’ animal in terms of k and/or α1. Eventually,
the classifiers also learn to exploit the effects of α2 and α3 in
order to make the right decision; thereby driving the model
population to evolve these two parameters correctly. After
about the 500th generation, the learning of the four param-
eters proceeds with virtually identical rates.

4.4 Using a Simple Evolutionary Algorithm
In order to compare the coevolutionary method against a

more traditional approach, we used a simple evolution where
a single population of models evolves. As there are now no
classifiers, an interactive approach is not possible, and thus
we conducted 100 evolutionary runs for the passive 1 and
passive 2 methods of changing the light intensity in the ani-
mal’s environment. The structure of the evolution is identi-

228

0 200 400 600 800 1000
10-10

10-8

10-6

10-4

10-2

100

102

generation

to
ta

l s
qu

ar
e

er
ro

r (
lo

g
sc

al
e)

k
α1
α2
α3

Figure 7: This plot shows how the square error in
the individual parameters changes over the genera-
tions in the interactive coevolution in the case with-
out noise. The curves correspond to median values
from 100 coevolutionary runs.

1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

index of model parameters

va
lu

e
of

 m
od

el
 p

ar
am

et
er

s

passive 1
passive 2

Figure 8: This plots shows the distributions of the
best evolved parameters in the 1000th generation in
the simple evolutions with a single population of
models (without noise). Parameters 1 through 4
correspond to k, α1, α2 and α3, respectively. The
true values are k = 1.25, α1 = 0.8, α2 = 0.4 and
α3 = 0.2. Each box corresponds to 100 evolutionary
runs. Note that in order to zoom in on the relevant
range, some boxes and outliers are omitted from the
plot.

cal to the sub-algorithms used in the coevolution, including
the parameter settings (see Sec. 3.2.3), except for the fit-
ness calculation. Now, in each generation, 100 experiments
are performed on the animal using 100 randomly generated
intensity patterns. The 100 intensity patterns are used to
evaluate a model 100 times, and the average square error be-
tween the model’s and the animal’s speed sequences is used
as the model’s fitness. Fig. 8 reveals that, like the passive
coevolutions, the evolution is able to identify parameters k
and α1, but not α2 and α3.

5. CONCLUSIONS
This paper has presented a new platform that allows for

the automatic learning of animal behavior without prior in-
formation. We have shown that, by allowing classifiers to
control the stimuli in the animal’s environment, the system
is able to correctly identify the parameters of a relatively
complex behavior. Classifiers that only passively observe
the animal were unable to learn its behavior. Moreover,
evolutions that attempted to evolve the behavior using a
simple pre-determined comparison metric failed. This sug-
gests that our approach of not relying on such metrics and
of allowing the system to learn about the animal through in-
teractions warrants further investigation. One of the limita-
tions of the current setup is the large number of experiments
that are performed on the ‘real’ animal. This can (i) cause
the coevolutionary process to take a prohibitively long time
to learn the animal’s behavior, and (ii) raise ethical issues
regarding the animal’s well-being. In the proof-of-concept
study, both model and ‘animal’ shared the same structure
(yet the classifiers do not have any knowledge about the an-
imal). In the future, we will address these limitations by
reducing the number of experiments required, and by using
other types of models (e.g. neural networks). Finally, we
also intend to perform experiments using robotic animats
and real animals.

6. ACKNOWLEDGMENTS
The research work disclosed in this publication is funded

by the Marie Curie European Reintegration Grant within
the 7th European Community Framework Programme (grant
no. PERG07-GA-2010-267354).

M. Gauci acknowledges support by the Strategic Edu-
cational Pathways Scholarship (Malta). The scholarship
is part-financed by the European Union—European Social
Fund (ESF) under Operational Programme II—Cohesion
Policy 2007–2013, “Empowering People for More Jobs and
a Better Quality of Life”.

7. REFERENCES

[1] H.-G. Beyer. The theory of evolution strategies.
Springer, Berlin, 2001.

[2] J. J. Bolhuis and L.-A. Giraldeau. The behavior of
animals: mechanisms, function, and evolution.
Wiley-Blackwell, USA, 2004.

[3] J. C. Bongard and H. Lipson. Automated robot
function recovery after unanticipated failure or
environmental change using a minimum of hardware
trials. In Proceedings of the 2004 NASA/DoD
Conference on Evolvable Hardware, pages 169–176.
IEEE Computer Society, 2004.

[4] J. C. Bongard and H. Lipson. Nonlinear system
identification using coevolution of models and tests.
IEEE Transactions on Evolutionary Computation,
9(4):361–384, 2005.

[5] J. C. Bongard, V. Zykov, and H. Lipson. Resilient
machines through continuous self-modeling. Science,
314(5802):1118–1121, 2006.

[6] J. L. Elman. Finding structure in time. Cognitive
Science, 14(2):179–211, 1990.

[7] J. Evans and A. Rzhetsky. Machine science. Science,
329(5990):399–400, 2010.

229

[8] I. D. Gauld, M. A. O’Neill, and K. J. Gaston. Driving
Miss Daisy: the performance of an automated insect
identification system. In Hymenoptera: evolution,
biodiversity and biological control. The Fourth
International Hymenoptera Conference, pages
303–311. CSIRO PUBLISHING, 1999.

[9] L. Grossman. Computer literacy tests: Are you
human? Time Magazine, June 2008.

[10] R. D. King, J. Rowland, S. G. Oliver, M. Young, et al.
The automation of science. Science, 324(5923):85–89,
2009.

[11] B. Kouchmeshky, W. Aquino, J. C. Bongard, and
H. Lipson. Co-evolutionary algorithm for structural
damage identification using minimal physical testing.
International Journal for Numerical Methods in
Engineering, 69(5):1085–1107, 2007.

[12] N. MacLeod, M. Benfield, and P. Culverhouse. Time
to automate identification. Nature, 467(7312):154–55,
2010.

[13] M. Mirmomeni and W. Punch. Co-evolving data
driven models and test data sets with the application
to forecast chaotic time series. In 2011 IEEE Congress
on Evolutionary Computation, pages 14–20. Auburn
University, New Orleans, LA, 2011.

[14] A. Persidis. High-throughput screening. Nature
biotechnology, 16(5):488–493, 1998.

[15] J. Schmidhuber. Der ideale Wissenschaftler (in
German). http:
//www.cio.de/karriere/personalfuehrung/803246,
June 2004.

[16] M. Schmidt and H. Lipson. Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85, 2009.

[17] A. Turing. Computing machinery and intelligence.
Mind, 59(236):433–460, 1950.

[18] K. E. Whelan and R. D. King. Intelligent software for
laboratory automation. Trends in Biotechnology,
22(9):440–445, 2004.

[19] X. Yao, Y. Liu, and G. Lin. Evolutionary
programming made faster. IEEE Transaction on
Evolutionary Computation, 3(2):82–102, 1999.

230

