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Abstract— We study a simple algorithm inspired by the Brazil
nut effect for achieving segregation in a swarm of mobile robots.
The algorithm lets each robot mimic a particle of a certain
size and broadcast this information locally. The motion of each
particle is controlled by three reactive behaviors: random walk,
taxis, and repulsion by other particles. The segregation task
requires the swarm to self-organize into a spatial arrangement
in which the robots are ranked by particle size (e.g., annular
structures or stripes).

Using a physics-based computer simulation, we study the
segregation performance of swarms of 50 mobile robots. The
robots represent particles of three different sizes. We first
analyze the problem of how to combine the basic behaviors
so as to minimize the percentage of errors in rank. We then
show that the system is very robust to noise on inter-robot
perception and communication. For a noise level of 50%,
the mean percentage of errors in rank is 1%. Moreover, we
investigate a simplified version of the control algorithm, which
does not rely on communication.

Finally, we show that the mean percentage of errors in rank
decreases exponentially as the particles’ size ratio increases.
As the error is bounded, one can achieve 100% error-free
segregation. The reduction in error, however, comes at the
expense of an increase in the required sensing/communication
range.

Index Terms—Annulus, Brazil nut effect, center-periphery,
muesli effect, pattern formation, robots, segregation, sorting,
stripes, swarm intelligence

I. INTRODUCTION

One of the grand challenges in engineering is the design
of decentralized systems composed of numerous autonomous
embodied agents for applications at scales from the macro to
the nano. Nature offers a wide range of decentralized systems
in which collective phenomena emerge as a result of a self-
organized process [1]. In the last decades, researchers of
various disciplines have identified some of the underlying
principles of such decentralized and self-organizing natural
systems and transferred them to technology [2], [3], [4].

One example of a natural collective phenomenon is the
coordinated motion in groups of animals, such as a flock
of birds, a school of fish, or a crowd of humans. Inspired
by this phenomenon, Reynolds [5] created flocks of artificial
agents in a computer simulation. He identified a set of three
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Fig. 1. Segregation in a swarm of 50 mobile robots (top view). Each
robot mimics a particle of a certain size. Red, green, and blue robots mimic
particles of radius 6 cm, 12 cm, and 24 cm, respectively. The robot’s motion
is governed by three behaviors: a vector pointing in a random direction,
a vector pointing towards the center (not indicated), and vectors pointing
away from any intersecting particles. The combination of these vectors leads
to the formation of an annular structure.

simple rules that generated flocking behaviors. The first rule
let agents avoid colliding with each other. The second rule
enabled nearby agents to match their headings and speed.
The third rule enabled agents to stay close to nearby flock
mates. The rules produced three vectors which were then
combined in a way to produce the overall behavior.

In this paper, we take inspiration from the collective phe-
nomenon that segregation occurs when shaking constantly
a mixture of particles of different sizes [6]. The underlying
mechanism is known as the Brazil nut effect or the muesli
effect. Barker and Grimson [7] describe it as follows: “During
the periods when shaking loosens the packing, individual
small particles can move into voids beneath large particles
and so prevent them from returning to their previous posi-
tions. It is far less probable that several small particles will
move together so as to create a void that can be occupied
by a single large particle. The net effect is that the smaller
particles occupy the lower positions during the active part of
the shaking process and then become trapped there when the
grains fix into a new arrangement.” As reported in [8] the
diameter ratio of the different particles is a critical variable—
increasing this ratio leads to a decrease in the segregation
error.
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To understand segregation phenomena is of vital interest to
the food processing industries, involving powders and other
foods made of particles or granules. Our primary motivation
however is to develop a simplistic control algorithm that
allows mobile robots to form 2-D or 3-D ordered patterns,
such as the annular structure shown in Fig. 1. Potential
application domains of such structures (including center-
periphery formations) comprise construction, encapsulation
and defense strategies.

Melhuish et al. [9], [10] and Wilson et al. [11] investigated
simple rules to let a colony of physical robots built annular
structures by pushing and pulling pucks of particular size.
They explored several mechanisms inspired by the behavior
of Leptothorax ants [12]. One mechanism was based on the
Brazil nut effect, that is, to promote segregation based on
differences in the pucks’ sizes. Another mechanism let the
robots introduce an object specific spacing before dropping
the object. The robots formed structures of pucks showing
segregation, though the performance was not optimal (re-
gardless of the mechanism used). One reason for this was
that multiple performance criteria were targeted: In addition
to segregation, the compactness, shape, and completeness of
the resulting structure were considered. Moreover, Wilson et
al. [11] state “there is [...] no force similar to a gravitational
force, required for muesli sorting, toward the centre of the
cluster. Here gravity is replaced by a clustering tendency
provided by the robots, but this does not seem to provide
the objects with a strong enough pull towards the centre of
the cluster.”

Different from the studies of Melhuish et al. and Wilson et
al. our robots simulate a particle system under vibration.
We thus directly exploit the Brazil nut effect. The robots
represent the particles themselves. The particle size however
exceeds the robot’s physical dimensions. All robots (and all
particles) are continuously in motion.

We first analyze the system under the assumption that the
robots’ sensors are not affected by noise. In fact, the partic-
ular level of noise would likely depend on the technology
used (see Section IV). We perform a systematic study to
choose a good combination for the algorithm’s most intrinsic
parameters. We then analyze the time dynamics of the
segregation process. Moreover, we examine the performance
of the system for different levels of noise. Based on the
knowledge gained, we propose a simplified version of the
control algorithm, which does not rely anymore on inter-
robot communication. Finally, we show that the system is
capable of error-free segregation (provided the sensing range
is large enough).

II. METHODS

A. Simulation model

The simulator models the kinematics and dynamics of
rigid bodies in two dimensions (2-D) using the open-source
Enki simulation toolkit [13]. Enki provides a faster than real-
time simulation of groups of mobile robots that move on flat
terrain. It has built-in support for several existing robotic

Fig. 2. Stripe pattern formed by a swarm of 200 robots in a bounded
environment.

platforms. Enki can also be used by the WebotsTM simulator
in 2-D mode [14].

The 2-D space is modeled continuously (in double preci-
sion). Time progresses in discrete steps of 1/30 s. The length
of the control cycle is ∆ = 0.1 s.

The core characteristics of the robot model are those
of the e-puck robot [15]. It weighs 152 g. Its body is
modeled as a disk of radius 3.7 cm. Two wheels are mounted
symmetrically on a single axis crossing the center (with an
inter-wheel distance of 5.1 cm). Each wheel can be controlled
independently by setting a speed (in cm/s) within the range
[−M,M ], where M = 12.8. The speed of each wheel is
subjected to ±5% uniform noise, which is updated at every
control cycle.

We assume that robot i, i = 1, . . . , n, can identify the
angular position αi of a predefined destination (in the co-
ordinate system of robot i). In our study, we refer to the
destination as the “center” of the environment. The robots
are expected to form patterns of annuli around this center, as
those shown in Fig. 1. Note that in a bounded environment,
the destination could be outside the boundaries. The robots
could then form a stripe pattern as shown in Fig. 2.

Each robot broadcasts a simple signal that can be received
by other robots in its vicinity. Robot i receives the signal
emitted by robot j 6= i if and only if the distance between
the two (from center to center) does not exceed range R. In
our particular study, the range is R = 48 cm. As explained
in Section II-B, any larger range would produce the same
system behavior. For any robot j within range R, robot
i receives the corresponding signal and can estimate the
distance (di,j) to and the angular position (γi,j) of the emitter
(in the coordinate system of robot i). These features are not
directly available on the e-puck robot, but are supported by
several e-puck module extensions (see Section IV).

We start with the assumption that each robot receives
correctly the signal from any nearby robot, and that it can
calculate the exact position of the emitter (di,j , γi,j). This
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assumption will be relaxed in Sections III-C and III-D.
For the generation of pseudo-random numbers, we use the

2002 revision of the MT19937 generator [16].

B. Controller

We consider robot i, i = 1, 2, . . . , n, as a disk of radius
ri. The disk is only a control concept and does not reflect
the robot’s physical dimensions. However, it is assumed that

min
i
ri ≥ r, (1)

max
i
ri ≤

R

2
, (2)

where r is the radius of the smallest circle that can fully
contain the robot, and R is the robots’ sensing range (see
Section II-A). We assume that each robot can broadcast
locally information that enables other robots to identify the
size of its disk. This assumption can be relaxed as explained
later.

Each robot executes the same control algorithm. The algo-
rithm is implemented using the motor schema paradigm [17].
At the beginning of each control cycle (i.e., every ∆ =
0.1 s), robot i generates schema instantiations for three motor
schemas:
• v(taxis)

i , a unit vector pointing towards a predefined
destination. Formally,

v(taxis)
i =

(
− sinαi

cosαi

)
, (3)

where αi is the angular position of the destination (see
Section II-A). In our particular study, the destination is
referred to as the center of the environment.

• v(rand)
i , a unit vector pointing in a random direction.

Formally,

v(rand)
i =

(
− sinβi

cosβi

)
, (4)

where βi is uniformly sampled from [0, 2π). At the
beginning of each control cycle, βi is updated with
probability 1/∆.

• v(repul)
i , a vector that represents the cumulative repulsion

force by other nearby robots. Robot i is repelled by
robot j 6= i if and only if the disks of robots i and j
overlap. Formally,

v(repul)
i =

∑
j 6=i

v(repul)
i,j , (5)

v(repul)
i,j =


(

sin γi,j

− cos γi,j

)
di,j < ri + rj ;

0 otherwise,
(6)

where γi,j and di,j are respectively the angular position
and the distance of robot j. Note that v(repul)

i can be
computed based on local information, as robot i can
only be repelled by robot j if the latter is within range
R [see Equation (2)]:

ri + rj ≤ 2 max
k

rk ≤ R. (7)

The three motor schema instantiations are combined as
follows:

vi = v(taxis)
i + c(rand)v(rand)

i + f(c(repul)v(repul)
i ) (8)

Parameters c(rand) and c(repul) are used to weight the relative
impact of the motor schema instantiations. Function f(·)
adjusts the norm of the weighted repulsion vector to M/2
in case the norm exceeds this limit. Whereas the other two
motor schema instantiations are unit vectors, the norm of
vi depends on the number, type, and arrangement of other
disks. Function f(·) thus limits the impact of repulsions.

The speed of the left and right wheels, si,l and si,r, are
calculated as follows:(

si,l

si,r

)
=
(

1 1
−1 1

)
vi. (9)

If si,l (or si,r) is not within range [−M,M ], it is clamped
to the corresponding bound.

C. Experimental setup

We consider a system with n = 50 robots and with m = 3
different sizes of disks. Thus there are three homogeneous
groups of robots to be segregated. The radius of the ith
smallest disk, r(i), is chosen as follows:

r(i) = abi−1, (10)

where a is the size (in cm) of the smallest disk and b is the
minimum size ratio between disks of different groups. We
use a = 6 cm and b = 2. From Equation (7), it follows that
R must be at least 2 maxi ri = 2abm−1 = 48 cm.

Ideally, we expect the robots to organize into the fol-
lowing spatial arrangement: The disks of radius r(i) (i =
1, 2, . . . ,m) are fully contained within the area of the annulus
formed by the concentric circles of radii (i− 1)g and ig in
the center of the environment. Parameter g represents the
“thickness” of the annulus. Consequently, the disk of each
robot is fully contained in the area represented by a disk of
radius mg in the center of the environment.

To obtain the ideal pattern, we must choose n as well as
n(i), the number of robots with disk radius r(i). Variable
n(i) is set proportional to the ratio of the area of the
corresponding annulus [i.e., πg2(i2−(i−1)2)] and the area of
each disk [i.e., π(r(i))2]. Setting n = n(1)+n(2)+· · ·+n(m)

and eliminating variable g, one obtains:

n(i) =
2i−1

(r(i))2

m∑
j=1

2j−1
(r(j))2

n. (11)

To achieve the annuli’s thickness g and thus the pattern’s
overall dimensions, the number of robots n can be chosen
as follows:

n = g2
m∑

j=1

2j − 1
(r(j))2

. (12)

It is worth noting that we do not aim at forming the exact
pattern as described above. The calculated numbers of disks
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Fig. 3. Mean segregation error for samples taken over the entire parameter
range (linear scale, 100 trials per parameter combination).

are approximate only because the packing density of disks
depends on the disks’ radii.

At the beginning of a simulation trial, n robots are placed,
one after the other, at non-overlapping random positions and
with random orientations in a circular area in the center of
the environment. This area corresponds to an (initial) density
of 200 cm2 per robot. Subsequently, the robots are selected
for the m groups of different disk radii. To avoid any bias,
the robots are selected at random and independently from the
order in which they were assigned to their positions. The re-
quired number of robots with disk radii r(i) is obtained from
Equation (11). In principle, each robot could choose disk
radius r(i) with probability n(i)

n . Note that this probability
does not depend on n.

D. Performance metric

We consider two robots i and j at absolute positions xi

and xj . Let o denote the destination—in this study the center
of the environment. The segregation error of robot pair (i, j)
is defined as

ei,j =

 1 (ri < rj) ∧ (||xi − o|| ≥ ||xj − o||) ;
1 (ri > rj) ∧ (||xi − o|| ≤ ||xj − o||) ;
0 otherwise.

(13)

The segregation error for the entire swarm is obtained by
summing up the segregation errors for all possible pairs of
robots. Thereby, the metric evaluates the pattern based on all
possible errors in the robots’ rank.

The segregation error is scaled such that 0 and 1 corre-
spond respectively to the best possible and least possible
segregation errors. A segregation error of 0.5 corresponds
to placements without positional bias. For example, the
expected segregation error of robots in their initial placement
is 0.5. A segregation error of 1 can only be obtained if the
disks are ranked in the exact opposite order.
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Fig. 4. Mean segregation error for samples taken over a focused parameter
range (log-scale, 100 trials per parameter combination).

III. RESULTS

A. The influence of control parameters c(rand) and c(repul)

In the following, we investigate the performance of a
swarm of n = 50 robots that consists of m = 3 homogeneous
groups: According to Equation (11), the swarm consists
of 24 robots representing disks of radius 6 cm, 18 robots
representing disks of radius 12 cm, and 8 robots representing
disks of radius 24 cm (see also Fig. 1).

We took samples over the whole range of control pa-
rameters: c(rand) ∈ {0, 0.2, 0.4, 0.6, . . . ,M} and c(repul) ∈
{0, 0.2, 0.4, 0.6, . . . ,M/2}. For each parameter combination
we conducted 100 independent simulation runs (i.e., 214500
independent simulation runs in total). The simulation period
was 600 s. The segregation error was computed at the end of
each simulation run.

Fig. 3 shows the mean segregation errors. For a large range
of parameters, no or only little segregation occurred (0.4–
0.6 range). In particular, this is the case if c(repul) is 0 or
if c(rand) is larger or equal to 3.6. The lowest segregation
error occurred for c(rand) ≤ 2.

We performed further independent simulation runs to
sample points over a more focused range of parameter com-
binations: c(rand) ∈ {0, 0.1, 0.2, 0.3, . . . , 2} and c(repul) ∈
{0, 0.1, 0.2, 0.3, . . . ,M/2}. For each combination we con-
ducted 100 runs (i.e., 136500 independent simulation runs
in total).

Fig. 4 shows the mean segregation errors. Note that in
this figure, color levels represent the errors in log-scale.
Two values (in white) are out of the considered range;
the corresponding segregation errors are thus below 0.510.
The segregation errors do not change much for repulsion
coefficients larger than 2 (if the random coefficient is kept
constant at the same time). This is likely caused by function
f [see Equation (8)], which limits the overall impact of
repulsions in relation to the robot’s maximum speed.

We conducted further independent simulation runs in order
to choose the best parameter combination (among all parame-
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Fig. 5. Mean segregation error with the best found parameter combination,
c(rand) = 0.6 and c(repul) = 0.3, for different run times T (log-scale,
2000 trials per data point). Arrows stretch respectively to the smallest and
biggest observations (dotted arrows indicate that the smallest observation is
zero)

ter combinations considered in Fig. 4) . In particular, we used
a racing algorithm [18] to identify the parameter combination
that is likely to have the lowest expected segregation error
(using a p-value of 0.05). The outcome was c(rand) = 0.6
and c(repul) = 0.3. In the following, we analyze the system
using this parameter combination in more detail.

B. The influence of time

In this section, we examine the time dynamics. We con-
sider simulation periods of T = 0, 100, 200, . . . , 3600 s. For
each T , we conducted 2000 simulation runs (i.e., 74000
independent simulation runs in total).

Fig. 5 shows the mean segregation error. At time T = 0,
the mean segregation error is ca. 0.5. This is not surprising as
the order of robots is purely random. During the first 600 s,
the error rapidly decreases to a value of ca. 0.00069 (note
that the plot is in log-scale). As time proceeds, the error
further decreases, but only moderately, until it finally settles
around a value of ca. 0.00012 (the mean of all observations
for 2000 ≤ T ≤ 3600).

In the following analysis we use a time period of T =
600 s again.

C. The influence of errors in the inter-robot perception/
communication

In this section, we examine the influence of errors in
the inter-robot perception and communication on the per-
formance of the system. Let us assume that the disk of robot
i intersects with the disk of a nearby robot j 6= i. Thus, robot
i should get repelled by robot j. In this situation, robot i is
affected by three types of noise:

1) N1: Robot i detects the intersection with the disk
of robot j with probability u1 and does not detect
the intersection otherwise. The noise level can be
controlled from u1 = 0 (0%) to u1 = 1 (100%).
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N1 (intersection of disks)
N2 (angular position of disk)
N3 (disk type)
N1 + N2
N1 + N3
N2 + N3
N1 + N2 + N3

Fig. 6. Mean segregation error with the best found parameter combination,
c(rand) = 0.6 and c(repul) = 0.3, for different types of noise and for
different levels of noise (log-scale, 2000 trials per data point).

2) N2: Provided that robot i detects the intersection with
the disk of robot j, the angular position of robot j
(and its disk), γi,j , is subjected to an offset ξi,j . The
offset ξi,j is chosen uniformly from range [−u2, u2].
The noise level can be controlled from u2 = 0 (0%)
to u2 = π (100%).

3) N3: Provided that robot i detects the intersection with
the disk of robot j, it detects the disk type of robot
j correctly with probability u3, and it detects the disk
type incorrectly otherwise. In the latter case, we sample
uniformly from all incorrect types. The noise level can
be controlled from u3 = 0 (0%) to u3 = 1 (100%).

We consider the seven noise configurations N1, N2, N3,
{N1,N2}, {N1,N3}, {N2,N3}, and {N1,N2,N3} as well
as the noise levels 0%, 2%, 4%, . . . , 100%. We conducted
2000 independent simulation runs for every pair of noise
configuration and noise level. That is, we conducted 714000
simulation runs in total.

Fig. 6 shows the mean segregation errors. Overall, the
system performs fairly robustly with respect to noise (note
that the segregation errors are plotted in log-scale). It is
not surprising that the system can not cope with a noise
level of 100% for noise type N1 or N2—in both cases the
robot has no information on the angular position of other
robots; the resulting ranks are purely random. Consequently,
the performance is 0.5. Interestingly, the system is fairly
robust against noise of type N3. Regardless of the level
of noise (0–100%), the mean segregation error was always
less than 0.0029. Moreover, noise type N3 cancelled out (at
least partially), noise types N1 and N2. Robots affected by
noise types N1 and N3 (or by N1, N2, and N3) performed
consistently better, on average, than robots affected only by
noise type N1 (or by N1 and N2). Robots affected by noise
types N2 and N3 performed better, on average, than robots
affected only by noise type N2, except for noise levels within
range [18, 28]. Recall that noise type N3 concerns the signal,
which indicates the disk radii of other robots. A noise level of
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Fig. 7. Mean segregation error with the best found parameter combination,
c(rand) = 0.6 and c(repul) = 0.3, for a control policy that assumes a
unique disk radius h for all other robots (log-scale, 1000 trials per data
point). Robot i gets thus repelled by all robots within range ri + h. The
arrows are explained in the caption of Fig. 5.

66% would effectively mean that the robot chooses randomly
and uniformly one of the three possible values (r(1), r(2),
and r(3)). Interestingly, as the noise level further increased
to 100%, the mean segregation error slightly decreased. A
noise level of 100% would mean that the robot chooses
randomly and uniformly among the two incorrect values.
Another counter-intuitive result is that the performance of the
swarm slightly increased when the N3 noise level grew from
0 to ca. 6%. A reason for this could be that an occasional
misperception of another robot’s disk radius can provide
the impetus for escaping a spatial arrangement that is only
locally optimal, whereas it would not harm to the same extent
a spatial arrangement that is globally optimal.

D. Segregation without communication

In the previous section, we have seen that a robot does not
fundamentally require knowledge of the disk radii of others
robots. In this section, we study a simplified version of the
control algorithm, which does not rely on communication.
In particular, we examine the situation that robot i, i =
1, 2, 3, . . . , n, assumes that all other robots have a constant
disk radius h. Discrimination is thus based solely on the
knowledge of the robot’s own disk radius r(i). Robot i
is thus repelled by any other robot within sensing range
r(i) + h. Variable h represents the sensing horizon beyond
the robot’s own disk radius. We consider sensing horizons
h = 1.4k, k = 1, 2, 3, . . . , 23 (in cm). For each h, we
conducted 1000 simulation runs (i.e., 23000 independent
simulation runs in total). As h ≥ 1.4 cm, the sensing range
of each robot is at least twice the radius of its physical body
(mini ri + 1.4 = 7.4 = 2 · 3.7).

Fig. 7 shows the mean segregation error (in log-scale). If
the sensing horizon is very small, the robots representing
the smallest disks do not get repelled by other robots. As a
consequence, they form a dense pattern (in the center of the
environment), in which other robots can easily get trapped.
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Fig. 8. Mean segregation error with the best found parameter combination,
c(rand) = 0.6 and c(repul) = 0.3, for different size ratios for the virtual
radii (log-scale, 7000 trials per data point). The arrows are explained in the
caption of Fig. 5.

If the sensing horizon is very large, the robots spread
out in the environment to limit the impact of repulsions.
In fact, in their initial configuration, all robots get repelled
by all other robots. The robots form large patterns, which
certainly takes up valuable time. More importantly, the effect
of segregation is limited because the relative differences in
the sensing ranges are low.

For an intermediate sensing horizon of about 5–11 cm
(not including the robot’s own disk radius), the lowest
mean segregation errors were observed: 0.0017, 0.0015, and
0.0018. For this range of parameters, the maximum error
observed was 0.0182.

E. Error-free segregation by increasing the size ratio

In this section, we examine the influence of control param-
eter b—the minimum size ratio between disks of different
groups [see Equation (10)]. We consider size ratios b =
1.0, 1.2, 1.4, 1.6, . . . , 4.0. For each b, we conducted 7000
simulation runs (i.e., 112000 independent simulation runs in
total).

Fig. 8 shows the mean segregation error (in log-scale). For
b = 1, all disks had the same size. Consequently, no segre-
gation occurred. The mean error decreased exponentially as
control parameter b was increased. For b = 3.4, 3.6, 3.8, and
4.0, the mean error was 0, that is, the segregation was error-
free at the end of the corresponding 28000 simulation runs.
As b increases from 2 to 4, the curve becomes less smooth (in
log-scale). This can be attributed to the decreasing number
of runs that still led to an error in segregation: 754 (b = 2.0),
219 (b = 2.2), 85 (b = 2.4), 22 (b = 2.6), 8 (b = 2.8), 5
(b = 3.0), 1 (b = 3.2), and 0 thereafter.

It is worth noting that the smallest possible segregation
error, ε, is bounded and that it decreases at most quadratically
with n:

ε ≥ 1(
n
2

) ≥ 1
n2
. (14)
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Fig. 9. Mean distance between the disks and the center for groups of
different virtual radii (linear scale, 4000 trials per data point). Arrows
indicate error bars.

On the other hand, the mean segregation error decreased at an
exponential rate. Therefore, by moderately increasing control
parameter b, one can potentially cope with huge swarms of
robots.

To understand how an increase in parameter b makes error-
free segregation possible, we examine the spatial distribution
of robots of different groups. Fig. 9 shows the mean distance
between the robots and the center (for the different groups).
The arrows in this figure indicate error bars (we did not use
error bars in the other plots, as the latter were in log-scale and
as some of the individual observations were zero). For b = 1,
all disks had the same size. Consequently, no segregation in
space occurred. As b increased, one can see that the clusters
drifted apart. The standard deviations are small. One can also
recognize that groups 2 and 3 are further apart than groups
1 and 2. The reason for this could be that the larger the disk
sizes of a group, the less dense the packing [the distribution
characterized by Equation (11) assumes that all disks can be
packed at density 1].

Further research is necessary to investigate in detail the
relationship of error-free segregation and noise. With a
setting of b = 4, a swarm of 50 robots produced error-free
segregation in all of 40000 additional simulation runs for a
moderate noise level of 2.5% on all sensors (the actuators
were subjected to noise as usual).

IV. PATH TOWARDS IMPLEMENTATION

We have implemented and tested the control strategy using
the physics based simulation toolkit Enki. We are planning
to implement the control strategies using the e-puck [15]
or swarm-bot [19] robotic platforms. Controllers developed
with Enki have already been ported successfully to these
robotic platforms (e.g., [20]).

For the e-puck robotic platform, a range & bearing board
is available [21]. For distances less than 600 cm, the board is
reported to operate with a maximum error of 39 cm in range
and 27 degrees in bearing. Another option for the e-puck

robot would be the omni-directional vision turret [22]. This
board is reported to allow robots to detect the signals emitted
by any other robot up to a distance of 100 cm.

The robots of the swarm-bot platform have built-in omni-
directional vision and communication systems (based on
colored LEDs). These have been extensively used in robotic
experimentation [23], [20], [24]

In a real scenario a beacon could be put above the center
location, so that all robots can localize the angular position
of the center. In a bounded environment, one could exploit
the Earth’s magnetic field, or its gravity in a slightly inclined
environment (both robots have accelerometers).

V. CONCLUSION

We proposed a control algorithm to let mobile robots self-
organize into annular structures. The algorithm is inspired by
the Brazil nut effect. Using a physics-based computer simu-
lation, we performed a comprehensive quantitative analysis
of the performance of a swarm of 50 robots. We showed that
the segregation performance is very robust to various types
of noise. This led to a simpler version of the algorithm,
which does not require communication. We observed that
the segregation error decreased exponentially when the size
ratio of the particles increased. This allows for error-free
segregation provided that the sensing range of the robots
is sufficiently large. It is worth noting that these properties
concern the formation of annular structures in open space.
The extent to which they apply to the formation of other
structures in more complex environments, for an example,
see Fig. 2, has yet to be determined and is subject to
ongoing investigation. Future work will also investigate these
properties in more detail (e.g., in larger swarms), as well as
test the algorithms (with and without communication) on a
physical robotic system.
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