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Abstract. This paper addresses the cooperative transport of a heavy
object, called prey, towards a sporadically changing target location by
a group of robots. The study is focused on the situation in which some
robots are given the opportunity to localize the target, while the others
(called the blind ones) are not. We propose the use of relatively simple
robots capable of self-assembling into structures which pull or push the
prey. To enable a blind robot to contribute to the group’s performance,
it can locally perceive traction forces, and whether it is moving or not.
The robot group is controlled in a distributed manner, using a mod-
ular control architecture. A collection of simple hand-coded and artifi-
cially evolved control modules is presented and discussed. For group sizes
ranging from 2 to 16 and different proportions of blind robots within the
group, it is shown that controlled by an evolved solution, blind robots
make an essential contribution to the group’s performance.
The study is carried out using a physics-based simulation of a real robotic
system that is currently under construction.

1 Introduction

The transport of heavy objects by groups of robots can be motivated by low
cost of manufacture, high robustness, high failure tolerance, or high flexibility –
all desirable properties for a robotic system to have. Instead of using one robot
powerful enough to transport the object (called prey hereafter) on its own, the
task is accomplished in cooperation by a group of less powerful robots.

This paper addresses the situation in which the target location may be lo-
calized by some robots, while the others (the blind ones) cannot perceive it.
In reality, such a constraint may exist due to various reasons. For a robot the
target could be not visible because it is shadowed by the prey, or because of
environmental conditions such as fog, steam or smoke. Or, it may happen that
the robot’s sensory system responsible for the perception of the target fails.

We propose the use of a group of relatively simple, autonomous robots (here-
after called s-bots) capable of self-assembling into structures which pull or push
the prey. Thus, this paper addresses the self-organization of s-bots into assem-
bled structures and the transport of heavy prey by groups of assembled s-bots.
The robot group is controlled in a distributed manner. To enable a blind s-bot to
contribute to the transport performance, it can locally perceive traction forces,
and whether it is moving or not.

X. Yao et al. (Eds.): PPSN VIII, LNCS 3242, pp. 852–861, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Group Transport of an Object 853

The paper is organized as follows. Section 2 provides a brief overview of some
works related to this study. In Section 3, the simulation model is introduced.
Section 4 details the different control policies that are used. Finally, in Sections
5 and 6 the results are discussed and conclusions are drawn.

2 Related Work

The field of distributed robotics has received growing attention by researchers
within the last 15 years. Multi-robot systems have been studied in various topic
areas and in different application domains [Parker, 2000]. Several works consid-
ered the cooperative transport of objects by a group of mobile robots. Some of
these have been inspired by studies of social insect behavior.

Deneubourg et al. [1990] proposed the use of self-organized approaches for
the collection and transport of objects by robots in unpredictable environments.
Each robot unit could be simple and inefficient in itself, but a group of robots
could exhibit complex and efficient behaviors. Cooperation could be achieved
without any direct communication among robots [Grassé, 1959, Deneubourg and
Goss, 1989]. Indirect communication is prevalent in the robotic system realized
by Aiyama et al. [1999] in which two autonomous legged robots are carrying a
common load in a pre-defined direction. In their system, the robots were com-
municating via the object to be moved. In order to synchronize its own actions
with its teammate, each robot is provided with a sensor to measure the force
exerted by the common load on the robot itself.

The use of force sensors for the coordinated motion of a group of pre-
assembled robots has been studied by Dorigo et al. [2004]. In their system, the
group was also able to move objects, if not too heavy, in an arbitrary direction.

Kube and Zhang [1993] studied a distributed approach to let a group of simple
robots find and push a box towards a light. The box was too heavy to be moved
by a single robot. Inspired by the observation that the behavior of ants during
transport (e.g., changes in their spatial arrangement) can be associated with the
detection of the stagnation of movement, Kube and Zhang [1995] extended their
system with a stagnation recovery mechanism.

3 Simulator

3.1 Environment and Task

The simulated environment that we use in our experiments consists of a flat
plane, a prey, and eight beacons which are uniformly arranged in a circle at a
distance of 500 cm from a position called the center. The prey emits green light.
It is modeled as a cylinder with a radius (in cm) in the range [5.8, 10], and a mass
(in grams) in the range [200N, 300N ], where N denotes the number of s-bots
used. For each simulation, radius and mass are chosen randomly according to
uniform distributions.
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Fig. 1. The s-bot: (a) front, side and top view of the s-bot model and (b) the control
scheme. For details see Section 3.2 and Section 4.

A simulation lasts 35 simulated seconds. At any point in time, there is only
one beacon emitting white light indicating the target location. The beacon is
selected randomly according to a uniform distribution once prior and twice dur-
ing simulation (after 15 and 25 seconds). Initially, the prey is put in the center,
and N s-bots are placed at random positions and with random orientations no
more than 50 cm from the prey. In principle, all s-bots are able to sense the light-
emitting beacon from any position in the environment. However, the controllers
of the blind s-bots are not provided with the corresponding sensory information.

The s-bot controllers are supposed to let the s-bots localize and approach the
prey, self-assemble into structures, each of them physically linked to the prey,
and pull or push the prey towards the light-emitting beacon.

3.2 S-Bot Model

The s-bot model is illustrated in Figure 1 (a). It is an approximation of a real s-
bot, currently under construction within the SWARM-BOTS project [Mondada
et al., 2004, Dorigo et al., 2004, see also www.swarm-bots.org]. In the following,
the actuators and sensors are detailed. Both the actuators and the sensors are
affected by noise.

Actuators. The s-bot is equipped with two motorized wheels, a rotational base,
a gripper element and an LED ring. Each motorized wheel can be controlled by
setting the desired angular speed (in rad/s) in the range [−8, 8]. The s-bot’s
upper part (the turret) can rotate with respect to the lower part (the chassis) by
means of a motorized axis. Therefore, the s-bot can align its turret with respect
to its chassis to any angular offset in [−π, π]. The gripper element is modeled as
a box heading forward with a small contact plate in the front. If the element is
in gripping mode, a rigid connection will be established as soon as the contact
plate touches the turret of another s-bot or the prey. The LED ring can emit
green light. It can either be switched on or off. In this study, each s-bot uses its
LED ring to signal whether an object is gripped or not.

Sensors. The simulated s-bot is equipped with a gripper status sensor, two
proximity sensors, a rotational base sensor, a traction sensor, and an omnidirec-
tional camera. These sensors have their counterparts on the real s-bot.
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The gripper status sensor is able to detect whether the gripper is connected to
another object or not. The proximity sensors measure the proximity of objects
in the front left and front right directions. The rotational base sensor is able
to perceive the angular offset between the turret and the chassis. The traction
sensor provides an estimate of the magnitude and orientation of the horizontal
component of the traction force that acts on the hinge joint between the turret
and the chassis of the s-bot. This force is affected by the s-bot’s actions and by
the force exerted by all the objects that are physically linked to the s-bot.

The camera sensor is able to estimate the horizontal angle to the light-
emitting beacon with respect to the s-bot’s forward motion. The camera sensor
can detect the presence and the coarse orientation of green objects in the front
of the s-bot up to a distance of 60 cm, and 20 cm, respectively. In addition, the
s-bot is able to detect whether it is moving or not. For the real s-bot, this ability
can be implemented using the camera system, for example by comparing the
position of light landmarks in its vicinity over time.

4 Control Policies

In a previous study on cooperative transport by a group of non-blind s-bots, we
addressed the entire task utilizing a single neural network controller synthesized
by artificial evolution [Groß and Dorigo, 2004]. We observed that the evolution-
ary process required a large number of generations to provide controllers that
performed quite well, and the attained performance level differed essentially be-
tween the replications of the experiment.

On the contrary, in this paper we have decomposed the problem of control
at the level of an s-bot into sub problems (see Figure 1 (b)): an s-bot can be in
one of two main states as indicated by the status of its LED ring: if the s-bot
has gripped the (green) prey or another s-bot, the LED ring emits a green light,
otherwise it is switched off. Initially all s-bot are not connected and the rota-
tional bases are locked. In this initial status, the Assembling-Module procedure
is in charge of controlling the s-bot so that it locates a green object, approaches
it and eventually establishes a physical connection with it. The s-bot is not al-
lowed to grip objects other than green. Therefore, a green s-bot is, either directly
or indirectly, always connected to the prey. Once a connection has been estab-
lished, the gripper remains closed and the rotational base is unlocked. Unless the
s-bot is blind, a simple but effective behavior for the robot is to align the chassis
towards the target location and to set the speed of the wheels to the maxi-
mum value (Move-Towards-Target procedure). If the s-bot is blind, it locally
perceives traction forces, and whether it is moving or not, and it determines
the desired orientation of the chassis and a nonnegative speed for the wheels
(Transport-Module procedure). In the following, several strategies implementing
the Assembling-Module and Transport-Module procedures are detailed.

4.1 Hand-Coded Solutions, Lower and Upper Bounds

For the Assembling-Module procedure a parameterized, hand-coded controller
has been developed: as long as no green object is perceived in its forward direc-
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tion, the s-bot turns applying the speed vector (s1,−s1) to the wheels. Once an
object is perceived, and if it is more than 20 cm away, the s-bot approaches it at
maximum speed. As soon as the object is close, the s-bot estimates whether it
is more to the left or to the right, in order to approach it while turning in the
appropriate direction (applying the speed vector (s2, s3), or (s3, s2), respectively
to the wheels). Based on a training set of 200 trials with 2, 4, 6 or 8 s-bots, 1000
combinations of s1, s2 and s3 have been evaluated, and the one exhibiting the
fastest average assembly time has been selected for the analysis.

For the Transport-Module procedure we implemented the following two sim-
ple policies to control the s-bots that are blind : the first one, in which the s-bots
do not move their wheels nor their rotational bases; and the second one, in which
the s-bots pull the objects gripped with maximum force.

As a lower bound to the performance of Transport-Module procedures for
which blind s-bots contribute to the group’s performance, we consider the case
in which the blind s-bots are removed from the simulation. As an upper bound
we consider the case in which the blind s-bots are replaced by non-blind ones.

4.2 Evolved Solutions

As an alternative to the hand-coded solutions, implementations of both modules
have been obtained by artificial evolution. The evolutionary algorithm used is
a self-adaptive (µ + λ) evolution strategy [Schwefel, 1975, Beyer, 2001]. The
number of parents is µ = 20 and the number of offspring is λ = 80.

An individual is composed of real-valued object parameters, and real-valued
strategy parameters specifying the mutation strength used for each component
of the object parameter vector. The object parameters encode the weights of
two neural networks: a simple perceptron for the Assembling-Module procedure,
and a simple recurrent neural network [Elman, 1990] with 4 hidden nodes for
the Transport-Module procedure. In the latter case, having memory might be
beneficial, since the s-bot can remember past sensory patterns (e.g., the readings
from the traction sensor) that are not affected by its current motor actions.

The initial population is generated randomly. With a probability of 0.8 an
offspring is created by mutation, otherwise two parent individuals are selected
and recombined. In the latter case, the mutation operator is applied to the cre-
ated offspring. The recombination operator acts on both, object and strategy
parameters, and combines two genotypes a) by swapping the parameter sets be-
longing to the first or second neural network, b) by intermediate recombination,
or c) by dominant recombination [Beyer, 2001], each with the same probability.

In the following, the fitness function is described.

Fitness. An individual represents a common controller which is cloned and
uploaded to each s-bot in the group. Its fitness is evaluated by performing five
tests of 35 simulated seconds each; the group size N ∈ [2, 3, 4, 5] and the number
of blind s-bots in the group NB ∈ [1, 2, . . . , �N/2�] are chosen randomly according
to uniform distributions. The fitness score is computed as the average of the
quality values observed in the five trials.



Group Transport of an Object 857

The quality Q exhibited in a trial is defined as Q = cA + (1 − c)B, where
c = 1

5 , A measures the overall assembling performance, and B measures the
transport performance of the blind s-bots. Q can be computed based solely on
information the s-bots perceive locally during simulation. A is the average of the
assembling performance of all s-bots for all control steps, while B is the average
of the transport performance of all blind s-bots for a subset of all control steps:
only control steps happening in the 6 seconds preceding a target change or the
end of the simulation are taken into account, as during the other control steps
the s-bots are busy assembling or adapting to the current target location1.

The assembling performance rewards s-bots for approaching and gripping
green objects: At(j) = 1, if s-bot j grips a green object at time t, and otherwise

At(j) =






1
2 + 1

4 (1 − ht(j)) if s-bot j senses a green object (<= 20 cm);
1
4 if s-bot j senses a green object (> 20 cm);
0 otherwise;

(1)

where ht(j) = min(1, αt(j)/π
6 ), and αt(j) denotes the angular deviation (in rad)

of s-bot j’s heading with respect to the green object perceived at time t.
The transport performance is defined as Bt(j) = 0 if s-bot j is not gripped

to any object at time t. Otherwise Bt(j) = Bt
1(j) + Bt

2(j), where Bt
1(j) =

1
2 max (0, ot(j)) rewards the s-bot for having its chassis oriented towards the
target2, while Bt

2(j) = 1
4 + 1

4st(j)ot(j) additionally takes into account the setting
st(j) ∈ [0, 1] for the nonnegative speed of the left and right wheels.

5 Results

Ten independent evolutionary runs have been performed for 300 generations
each. A single run lasts almost one week on a cluster of 10 computers, each one
equipped with an AMD Athlon XPTM 2400+ processor.

Figure 2 shows the development of fitness values for the ten runs performed.
The fitness values are very noisy. It is hard for a human observer to assess the
attained quality level of the whole transport system by using the given fitness
function. Therefore, we introduce another quality measure, the gained distance,
defined as the difference between the initial and final distances of the prey from
the light-emitting beacon. Since the target location changes twice, we take as
performance measure the sum of the corresponding three gained distances. Using
this new measure, we post-evaluated the µ = 20 best individuals of the final
generation of each evolutionary run on a sample of 200 different trials. For each
evolution, we consider the individual exhibiting the highest average performance
to be the best. We observed that the best individuals of all evolutionary runs
exhibit a similar average performance (on average 151 with standard deviation
7.6). In the following, we focus on the performance of the best evolved individual.

Figure 3 (a) shows the performance by means of the gained distance observed
for 4, 8, 12 and 16 s-bots, all of which are not blind. Hand-coded and evolved
1 An s-bot may take up to 2 seconds to realign its rotational base.
2 ot(j) ∈ [−1, 1]; the value 1 (-1) refers to alignment with the target (opposite to it).
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Fig. 2. Box-and-whisker plot providing information about the fitness development in
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third quartile. The median is indicated by a bar. The whiskers extend to the farthest
data points that are within 1.5 times the interquartile range. Outliers are indicated
as circles. The bold line at fitness level 0.5 marks an upper bound to the average
performance of robotic systems in which blind s-bots do not contribute to transport:
once an s-bot is connected, having its chassis oriented in a random direction and pulling
with maximum speed, the expected reward the s-bot receives is 0.5 (see Section 4.2).
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Fig. 3. Performance of solutions for (a) the Assembling-Module procedure for groups of
4 to 16 non-blind s-bots, and (b) the Transport-Module procedure for N s-bots of which
NB are blind; to assemble, the hand-coded Assembling-Module procedure is used.

implementations of the Assembling-Module procedure are compared; since no
blind s-bots are present, the Transport-Module procedure is not required. It can
be seen that the evolved solution scales better with group size. The bigger the
group, the higher the density of s-bots. Thus, the better performance of the
evolved controller might be due to an efficient use of the front left and front
right proximity sensors. An s-bot controlled by the hand-coded solution avoids
only obstacles shadowing green objects in its forward direction.

Figure 3 (b) shows the performance of several transport strategies for those
combinations of group size and number of blind s-bots that occur during evo-
lution. In every case, the parameterized, hand-coded solution with the most
successful parameter set is used as Assembling-Module procedure.

The first, and the last, box in each group represent the lower, and upper,
bounds (respectively) for the performance of Transport-Module procedures in
which blind s-bots contribute to the group’s performance. Blind s-bots are either
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artificially removed from the simulation (first box) or replaced by non-blind ones
(last box). Thus, the first, and the last, box display to what extent N−NB, or N ,
non-blind s-bots have transported the prey by pulling with the maximum speed
towards the target. By looking at the figure, we observe that in the scenarios in
which the percentage of blind s-bots is more than 50% (groups 2 and 6 from left
to right) N − NB s-bots are nearly incapable of moving the prey.

The second and third boxes in each group (from left to right) correspond to
the hand-coded solutions for the Transport-Module procedure. During transport,
the blind s-bots either don’t act (second box) or pull with maximum force (third
box). In general, if the non-blind s-bots are not powerful enough to overcome
the prey’s resistance to motion, blind s-bots pulling in random directions can
contribute to the group’s performance (on average). However, the higher the
number of blind s-bots, the less likely it is that all their pulling forces are properly
directed. On the other hand, if the non-blind robots are capable of transporting
the prey, the blind s-bots, because of their lack of knowledge about the target
location, may end up being an additional weight to be carried, determining a
decrease in performance.

The fourth box refers to observations in which the Transport-Module proce-
dure of the best evolved solution has been used. The performance of this con-
troller clearly outperforms the hand-coded solutions. With this controller blind
s-bots make an essential contribution to the group’s performance.

So far we have shown that we can control blind s-bots so that they contribute
to the transport. However, to what extent there is an advantage by using blind
s-bots seems to depend on the values of the parameters N and NB. Let P(x, y, z)
be the performance of a group of x s-bots of which y are blind and whose task
is to transport a prey of mass z · m (in grams), where m is chosen uniformly
random in [200, 300]. Given the group size N and the number of blind s-bots
NB, we can define the relative system performance as

RSP(N, NB) =
P(N, NB, N)
P(N, 0, N)

. (2)

In other words, RSP(N, NB) is the ratio between the performance of N s-bots
of which NB are blind and the performance of N non-blind s-bots. In addition,
we define the contribution factor of blind s-bots as

CF(N, NB) =
P(N, NB, N) − P(N − NB, 0, N)
P(N, 0, N) − P(N − NB, 0, N)

. (3)

CF(N, NB) is the ratio between the contribution of NB blind s-bots and the
contribution that NB non-blind s-bots would provide if put in the same situation.

Using the mean distance gain over 200 trials as performance measure, Table 1
lists the relative system performance and the contribution factor of blind s-bots
for the case in which both, the Transport-Module procedure and the Assembling-
Module procedure are specified by the genotype of the best evolved individual.
It can be seen that blind s-bots contribute to the system’s performance unless
all s-bots are blind (last column). In all cases in which no more than half of
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Table 1. Relative system performance RSP(N, NB) and contribution factor of blind
s-bots CF(N, NB) (both expressed as percentages) for the best evolved solution, and
for different group sizes (N) and different numbers of blind s-bots (NB).

NB : 0 1 2 3 1
4N 2

4N 3
4N N

N = 4 RSP 100.00 80.54 64.53 40.57 80.54 64.53 40.57 0.19
CF 100.00 50.20 57.88 39.14 50.20 57.88 39.14 0.19

N = 8 RSP 100.00 93.86 85.01 72.56 85.01 58.91 24.87 -0.43
CF 100.00 60.41 55.66 53.97 55.66 50.93 22.73 -0.43

N = 12 RSP 100.00 94.70 89.01 84.48 84.48 56.95 22.09 -0.70
CF 100.00 50.54 46.15 50.45 50.45 48.37 19.14 -0.70

N = 16 RSP 100.00 96.90 95.34 91.39 82.88 56.96 20.80 0.10
CF 100.00 51.70 54.29 58.06 40.42 47.41 16.85 0.10

the s-bots are blind, the contribution of the blind s-bots is 40 to 60% of the
contribution non-blind s-bots would provide (in average).

6 Conclusions

In this paper a robotic system composed of relatively simple robots capable of
self-assembling is proposed for the cooperative transport of a heavy prey. In prin-
ciple, the advantage of our robotic system with respect to robotic systems used
in previous studies in cooperative transport is twofold. First, due to the ability
to establish physical links among s-bots, the system is applicable to scenarios in
which the number of robots necessary to push/pull the prey is higher than the
number of robots which can directly manipulate it. Second, even if some of the
robots are blind (i.e., they cannot localize the target), they can contribute to
the overall system performance.

We assessed the performances of simple hand-coded and evolved solutions
and we put them in relation to lower and upper bounds. Unless no robot is able
to localize the target, having blind robots controlled by an evolved individual
is superior in performance to the alternative of removing them from the experi-
ment. On the contrary, in most of the trials, controlling the blind s-bots by the
hand-coded solutions is inferior in performance to the alternative of removing
them from the experiment. If no more than half of the robots are blind, the
contribution of the blind robots, if controlled by the best evolved controller, is
40 to 60% of the contribution non-blind robots would provide (in average) if put
in the same situation.

For the best evolved solution the performance scales well with group size,
making it possible to transport heavier prey by larger swarms of robots.
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