
Evolving Aggregation Behaviors in
Multi-Robot Systems

Supplementary Material

Melvin Gauci, Jianing Chen, Tony J. Dodd and Roderich Groß

1 Grid Search Visualization and Analysis

The resolution used in the grid search was twenty-one settings per parameter:

{−1.0,−0.9, . . . , 0.0, 0.1, . . . , 0.9, 1.0} , (1)

where −1.0 and 1.0 correspond to the maximum backward and forward rotation speeds
of the wheel, respectively. Therefore, 214 = 194481 controllers were tested in total. Each
controller was evaluated 100 times using Eq. (2) in [1] with different seeds (i.e. different
initial configurations of robots), with the set of seeds being identical for each controller.
The fitness of each controller was recorded as the mean fitness of the 100 evaluations:

F̄ (x) =
1

100

100∑
k=1

(x, ψk) (2)

The fitness landscape with the reactive controller is 5-dimensional (4 parameters plus
fitness), and therefore cannot be visualized as-is. Therefore, in order to obtain a reason-
able visualization, each possible combination of two parameters (4C2 = 6 combinations
in total) was considered separately, with the fitness at each point in the subspace being
taken as the maximum possible fitness achievable with the remaining two parameters
as degrees of freedom (within the resolution of the grid search). For example, for the
sub-space

(
s0l , s

0
r

)
, the fitness F̄ ∗ (s0l , s0r) at each point was calculated as:

F̄ ∗ (s0l , s0r) = max
s1l ,s

1
r

F̄
(
s0l , s

0
r , s

1
l , s

1
r

)
,

and similarly for the remaining two-parameter sub-spaces. Fig. 1 shows these six land-
scapes as color maps. As the robots used here are circular and symmetrical, if the
speed signals from the controller to the left and the right wheels of every robot had
to be inverted, the resulting behavior will be unaffected, other than that it would also
be ‘inverted’ in space. This is reflected in the facts that (i) the fitness landscapes on

1



18
0

2
00

22
0

2
40

2
60

28
0

s1r

s0r

s1l

s0l

s1r

s0l

s1l

s0r

s0r

s0l

s1r

s1l

Figure 1: A visualization of the fitness space with the reactive controller, as explored by
the grid search. See the text for details.

(
s0l , s

0
r

)
and

(
s1l , s

1
r

)
are nearly symmetrical along the diagonals s0l = s0r and s1l = s1r ,

respectively, and (ii) the fitness landscapes on the sub-spaces
(
s0l , s

1
r

)
and

(
s0r , s

1
l

)
are

nearly identical to each other, as are those on the sub-spaces
(
s0r , s

1
r

)
and

(
s0l , s

1
l

)
.

The fitness landscape on the sub-space
(
s0l , s

0
r

)
(top left plot in Fig. 1) shows a marked

‘valley’ along the diagonal defined by s0l = s0r , implying that having the robots move
in a straight line when they do not perceive another robot leads to a poor aggregation
performance. This can be interpreted intuitively, because robots that happen to be on
the periphery of the random initial configuration, and facing ‘outwards’, will diverge
from the rest of the group, without a possibility of ever changing their course (assuming
an unbounded environment). The fitness landscape on the sub-space

(
s1l , s

1
r

)
also shows

a ‘valley’ along the diagonal defined by s1l = s1r , implying that it is not optimal for
the robots to hone in a straight line onto a perceived robot. This could be considered
somewhat counter-intuitive, because a hand-designed controller would probably opt for
this option, at least as an initial guess.

From Fig. 1, it is clear that the fitness landscape is not uni-modal, but rather consists
of a number of peaks and troughs. This justifies the use of an evolutionary algorithm to
synthesize (i) a reactive controller with a higher resolution, and (ii) a recurrent controller,

2



1 5 10 50 500

20
0

25
0

30
0

3
50

generation g (log scale)

fi
tn

es
s,
F̄

(g
) ,

in
cm

−
1

Figure 2: This plot shows the evolutionary dynamics for two sets of 100 evolutionary
runs: one with a recurrent controller (blue) and one with a reactive con-
troller (red). The horizontal axis shows the generation, g, (with a log scale),
while the vertical axis shows the mean population fitness, F̄ (g), as defined
in Eq. (3). The curves show the mean F̄ (g) over the 100 runs, while the
vertical bars show the minimum and maximum value of F̄ (g) in generations
{1, 5, 10, 50, 100, 500, 1000}. The horizontal green line shows the best value
of F̄ (g) found by the grid search with a reactive controller. The horizontal
magenta line shows the expected value of F̄ (g) for robots that do not move
throughout the simulation (i.e. retain their initial configuration).

which is impractical to synthesize using a grid search as it consists of 8 unbounded, real-
valued parameters.

2 Evolutionary Dynamics

In order to monitor the dynamics of the evolutions, the µ = 15 selected individuals
in every generation of every evolution were evaluated one additional time each with
different initial configurations of robots. The fitness of the population at generation g
was computed as the average of these µ = 15 evaluations:

F̄ (g) =
1

µ

µ∑
k=1

F
(
x
(g)
k , ψk

)
(3)

3



controller s0l s0r s1l s1r
grid search reactive −0.80 −1.00 1.00 −1.00

evolved reactive −0.74 −1.00 0.99 −1.00

evolved recurrent → −1.00 → −0.85 → −1.00 → 1.00

Table 1: The top two rows of this table show the parameters of the best-performing reac-
tive controllers synthesized with the grid search (top row) and the evolutionary
algorithm (middle row). The bottom row shows the values of the wheel speeds
to which the outputs recurrent controller converge if a constant input (I = 0 or
I = 1)is applied successively for a number of control cycles.

Fig. 2 shows the dynamics of F̄ (g) for the two sets of evolutions (see caption for details). It
is clear that the dynamics reach a near-steady-state by the 1000th generation. The mean
value of F̄ (g) with a recurrent controller exceeds the one with a reactive controller after
around 10 generations. In the final generation, the worst-performing recurrent controller
has a lower fitness than the worst- performing reactive controller; this is because, as
explained in [1], one of the evolutions with a recurrent controller led to a circle-forming
controller (see Fig. 2(b) in [1]).

3 Controller Analysis

The top two rows in Table 1 show the parameters of the best- performing reactive
controllers synthesized by the grid search (top row) and the evolutionary algorithm
(middle row). It is evident that the evolutionary algorithm located essentially the same
controller; indeed, the only parameter that is significantly different between the two
controllers is the speed of the left wheel when I = 0, s0l , which has a value of −0.80
for the controller synthesized by the grid search, and a value of −0.74 for the evolved
controller. Interestingly, this small difference in the parameters accounts for a significant
difference in the aggregation performance of the two controllers (see Fig. 2(b) in [1]).
The reactive controllers operate as follows. When a robot does not perceive another
robot (i.e. when I = 0), it moves backwards with a curved trajectory. When a robot, on
the other hand, perceives another robot, it stops moving (as s1l ≈ s1r) and turns on the
spot in a clockwise direction.

The bottom row of Table 1 corresponds to the best-performing recurrent controller
synthesized by the evolutionary algorithm. The values in the table show the values of
the wheel speeds that the controller outputs converge to if the same input is applied for
a consecutive number of control cycles (hence the arrows in the table). For instance,
if a constant input I = 0 is presented to the network, then, after a number of control
cycles, the speed of the left wheel of the robot converges to −1.00, and so on. When
one looks at the recurrent controller in this manner, it is clear that its basic dynamics
are similar to those of the reactive controllers, but with the left and the right speeds
interchanged (recall that since the robots are symmetric in shape, such an interchange

4



-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1
.0

sl

s r

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1
.0

sl
s r

Figure 3: These plots show the internal dynamics of the best-performing recurrent con-
troller synthesized with the evolutionary algorithm. The left plot is for the
input I = 0, while the right plot is for the input I = 1. Each arrow shows in
which direction the state of the network, (γ1, γ2) moves, and the length of each
arrow is proportional to the distance that the state moves in that direction.
Such a plot is sometimes called a “quiver plot”.

leads to an essentially identical behavior). This shows that the memory inside the
recurrent controller is responsible for its superior performance (as shown in Fig. 2(b)
in [1]. Therefore, one can conclude that, while memory is not an essential component
for aggregation of robots with binary sensors, it can improve the performance of a
controller in terms of the speed of aggregation. Figure 3 shows the internal dynamics of
the recurrent controller (see the caption for details).

4 Fitness Dynamics

Figure 4 shows the dynamics of aggregation with 100 robots. 100 simulations were run
with different seeds (i.e. different initial configurations of robots), and the value of 1/d(t)

was recorded at each time step. Additionally, the time it took for the robots to first
form a single cluster (according to the definition in Footnote 2 in [1]) was recorded. The
dynamics of all runs reach a near steady-state within 1800 seconds (30 minutes).

5



0 500 1000 1500 2000 2500

0.
00

0
.0

1
0
.0

2
0
.0

3
0
.0

4

time, t, in s

1
/
d
(t
) ,

in
cm

−
1

0 500 1000 1500 2000 2500

Figure 4: This plot shows the dynamics of aggregation with 100 robots. The horizontal
axis represents the time, t, while the vertical axis shows a measure of aggrega-
tion, 1/d(t). The blue curve shows the mean aggregation measure over 100 runs
with different initial configurations, while the shaded light blue area shows the
range (minimum, maximum) of the aggregation measure across the 100 runs.
The horizontal red box plot shows the times taken by the 100 runs to achieve a
single cluster of robots. The horizontal magenta lines show the random (lower)
and the maximum (upper) values of 1/d(t) with 100 robots.

5 The Effect of Sensing Noise

False negative and false positive noise on the binary sensor are described in Section 4
of [1]. Dual noise is a combination of these two noises in equal proportions. Figure 5
shows the effect of these three types of noise on aggregation performance (see the caption
for details). False positive noise is detrimental to the performance. False negative noise
increases the performance up to a certain level (this corresponds to the ‘bowl’ shape in
Fig. 3(b) in [1]). Dual noise is also detrimental to aggregation performance, but less so
than false positive noise alone.

6 Scalability Study

Figure 6 shows the results of a scalability study with up to N = 1000 robots (see the
caption for details). It is worth noting that 1000 robots consistently aggregated into a

6



0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0

0
.0

1
0
.0

2
0
.0

3
0
.0

4

level of noise, p

1
/d

(t
) ,

in
cm

−
1
,

a
ft

er
18

0
0

s

Figure 5: This plot shows the effect of sensing noise on aggregation performance. The
blue, red and green curves correspond to false negative, false positive and
dual noise, respectively. The horizontal axis represents the time, t, while the
vertical axis shows a measure of aggregation, 1/d(t). The horizontal magenta
lines show the random (lower) and the maximum (upper) values of 1/d(t) with
100 robots. The curves show the mean value of 1/d(t) across 100 runs with
different initial configurations of robots, while the vertical show the minimum
and the maximum value of 1/d(t) across the 100 runs.

single cluster across 100 runs with randomized initial configurations.

References

[1] M. Gauci, J. Chen, T. J. Dodd and R. Groß, Evolving aggregation behaviors in multi-
robot systems, submitted to DARS 2012.

7



100 300 500 700 900

0
10

00
30

00
50

0
0

number of robots, N

ti
m

e
to

fo
rm

a
si

n
gl

e
cl

u
st

er
,

in
s

Figure 6: This box plot shows the time that it takes N = {100, 200, . . . , 1000} robots to
aggregate into a single cluster. For each value of N , 100 simulations were run
with different initial configurations of robots.

8


