
HAL Id: hal-00728618
https://hal.archives-ouvertes.fr/hal-00728618

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Modular Supervisory Implementation in
Microcontroller

Yuri Kaszubowski Lopes, André Leal, Roberto Rosso Jr., Eduardo Harbs

To cite this version:
Yuri Kaszubowski Lopes, André Leal, Roberto Rosso Jr., Eduardo Harbs. Local Modular Supervi-
sory Implementation in Microcontroller. 9th International Conference on Modeling, Optimization &
SIMulation, Jun 2012, Bordeaux, France. �hal-00728618�

https://hal.archives-ouvertes.fr/hal-00728618
https://hal.archives-ouvertes.fr

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12
June 6-8, 2012 - Bordeaux - France

”Performance, interoperability and safety for sustainable development”

Local Modular Supervisory Implementation in Microcontroller

Yuri Kaszubowski LOPES, André B. LEAL, Roberto S. U. ROSSO Jr., Eduardo HARBS

Universidade do Estado de Santa Catarina

Rua Paulo Malschitzki, s/n

89219-710 Joinville,SC - Brazil

yurikazuba@gmail.com, leal@joinville.udesc.br, robertorossojr@ieee.org, eduardo.harbs@gmail.com

ABSTRACT: This paper presents the implementation of supervisory control theory in microcontrollers.
To ensure a good implementation problems previously discussed in the literature must be solved in the
microcontroller environment. The memory of these devices is limited so the use of local modular supervisors
is encouraged as well as the use of strategies for compact representation of these models in memory. Finally
a code generation tool which implements the solutions presented in this work is elaborated aiming to facilitate
the use of this research. The major advantage of microcontroller is that it represents a low cost solution
for manufacturing automation when compared to a PLC. The use of the supervisory control theory provides
formal methodology for automatic synthesis of the controller, obtaining an optimal control process, which is a
minimally restrictive and non-blocking control.

KEYWORDS: Supervisory control, Discrete event systems, Automata, Microcontrollers.

1 INTRODUCTION

Discrete Event Systems (DES) are a modelling ab-
straction for a large variety of systems (Fabian and
Hellgren, 1998). The Supervisory Control Theory
(SCT), presented by Ramadge and Wonham (1987)
and Ramadge and Wonham (1989), is an approach
which provides formal methodology for automatic
synthesis of the DES controller. The main charac-
teristic of the SCT is the generation of controllers
performing a control action to achieve real goals.

According to Brandin (1996), there is lack of real
industrial applications in the use of SCT. Queiroz
(2004) reports that this lack is partly due to the prob-
lems caused by the huge number of states in the mod-
els in real systems, particularly in the monolithic ap-
proach, and partly attributable to the lack of prac-
tical results which demonstrate its implementation.
Several papers bring different approaches considering
the problem of computational complexity due to the
exponential growth in the number of states in the
composition of automata (Eyzell and Cury, 2001),
(Zhong and Wonham, 1990), (Wonham and Ra-
madge, 1988), (Queiroz and Cury, 2000). Those pa-
pers show other methods besides the monolithic ap-
proach: the modular approach and the local modu-
lar approach. Other articles successfully apply the
SCT (Silva et al., 2011; Diogo et al., 2011; Yalcin
et al., 2005).

Beyond the exponential growth in the number of

states in the composition of automata, the efficient
action of these automata in memory is another im-
portant issue in the implementation of supervisory
control in microcontrollers. In Barreta and Torrico
(2008) the use of chained lists and an automatic
code generation tool was presented. In Lopes et al.
(2011) a strategy of a compact way to store the au-
tomata data in a vector for monolithic supervisors
called memory safe was presented, and it started the
development of an automatic code generation tool,
called Nadzoru. Comparing these two approaches the
memory safe represents a lower memory cost than
the use of chained lists. However, chained lists are
more efficient in terms of computational time. Here
we apply the memory safe to implement the local
modular control structure in a microcontroller aiming
the lower memory space cost.

To implement the supervisory control some prob-
lems are detected, such as causality, choice and so on
(Fabian and Hellgren, 1998). In this paper we present
solutions to the problems in implementation of micro-
controllers introduced by Fabian and Hellgren (1998).
In Leal et al. (2009), Cruz et al. (2009), Cruz (2011)
and Leal et al. (2012) solutions to these problems for
PLC implementation were proposed. Here we apply
and extend these solutions to the microcontroller en-
vironment.

Finally we extend the Nadzoru tool to support a code
generator for all these methods. In fact, until this
work Nadzoru only created the data structure based

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

on the monolithic supervisor and ran a single state
machine in this data structure. The new tool version
is capable to make monolithic and local modular su-
pervisor microcontroller code, with a different set of
solutions to each problem presented.

The SCT is addressed in Section 2, next the prob-
lems of PLC implementation addressed by Fabian and
Hellgren (1998) are exposed in Section 3. The prob-
lems in the microcontroller environment is presented
in Section 4. The microcontroller implementation and
proposed solutions to the problems addressed are ex-
posed in Section 5. Finally, Section 6 presents the
conclusions and future works.

2 SUPERVISORY CONTROL THEORY

In a DES, physical events may be in an unknown
interval, the processes are discrete, asynchronous
and possibly non-deterministic. The DES can con-
trol, coordinate and assure an orderly flow of events
(Ramadge and Wonham, 1987; Ramadge and Won-
ham, 1989). In the SCT a DES system is modeled
in two different kinds: the plant subsystem models
and the control specifications models. The plant sub-
system models are all physical possibilities and the
control specifications models are all the control rules.

In order to illustrate the SCT methodology we give an
example. Consider a system consisting of a conveyor
that brings parts of three types: c1, c2 and c3 and a
sensor which identifies these parts. The problem is
that the conveyor can move only while the sensor is
not active, when the sensor is activated the conveyor
should stop. If the sensor changes its state from en-
able to disabled, the conveyor restarts the motion.
Figure 1 presents the automata that can be used to
model (a) the conveyor, (b) the sensor and (c) the
control specification which implements the supervi-
sory control rules which guide the plant behavior.
The specification modeled by the automaton (c) pro-
hibits the motion of the conveyor (event e1 lig) while
the sensor is enabled and prohibits to turn off (event
e1 des) the conveyor while the sensor is disabled.

The events e1 lig and e1 des are controllable events,
which are the ones that can be enabled or disabled
by external agents, in this case by the controller. The
transition from state 1 to 2 happens when the sensor
is enabled (events: s c1, s c2 or s c3) and the transi-
tion from state 2 to 1 occurs when the sensor is dis-
abled (event s des). The events s c1, s c2, s c3 and
s des are uncontrollable events, which are the ones
that cannot be prevented from occurring (Queiroz
and Cury, 2002a).

In the following we present the monolithic, the mod-
ular and the local modular approaches.

(a) (b)

(c)

Figure 1: Automata for: (a)conveyor, (b)sensor
(c)control specification.

2.1 Monolithic Approach

After make the plants subsystems and the control
specifications models the first strategy is to cre-
ate a unique monolithic supervisor. A supervisor,
like plant subsystems models and control specifica-
tions models, is an automaton (see Sipser (2005) for
an automaton definition). A monolithic supervisor
Smonolithic is represented by an automaton that gen-
erates the supremal controllable language given by
Lm(Smonolithic, G) = SupC(G,K). Where the free
behavior of the physical system G is G = G1||...||Gn

for n subsystems models. The target language K =
G||E which corresponds to the desired system be-
haviour of the system, and the control specification
E = E1||...||Em for m specification models. For de-
tails about the supremal controllable language calcu-
lation (SupC) and synchronous composition (||) op-
erations see Ramadge and Wonham (1987).

2.2 Modular Approach

In Wonham and Ramadge (1988) the modular ap-
proach for the supervisory control which explores the
modular property of each control specification was
presented. This approach creates a supervisor for
each control specification instead of a unique super-
visor for all of them. Thus, in a problem with m
control specifications models, m supervisors Smodular

i

such that, Lm(Smodular
i , G) = SupC(G,Ki) for i =

1, ...,m, are created. Where the free behaviour of the
physical system is the same of the monolithic supervi-
sor, given by G = G1||...||Gn for n plants models and
each target language is given for each control specifi-
cation as Ki = G||Ei.

The benefit of this method is related to the combi-
natorial explosion of the automata synchronous com-
position. In the worst case a synchronous compo-
sition operation of p automata A1, ..., Ap results in
an automaton A1||...||p where the number of states
#A1||...||p is given by #A1||..||p = #A1 × ... × #Ap,
in other words the resulting states in a synchronous
composition is the multiplication of the number of

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

states of all composed automata. For the worst case,
if all modular supervisors have two or more states,
the following relationship is valid #Smonolithic ≥
(#Smodular

1 + ...+ #Smodular
i).

To use the modular approach the supervisors can-
not be conflicting. In this case, the control action
of the modular supervisors results in the same con-
trol action as in a monolithic supervisor. In order
to verify if two or more supervisors are conflicting do
Ssync(modular) = S1||...||Sp and check if Ssync(modular)

is accessible and co-accessible. Non accessible or non
co-accessible supervisors synchronization denotes a
conflict. If two or more supervisors are conflicting
they need to be calculated together. Therefore, the
resulting supervisor S1,2 for two conflicting super-
visors S1 and S2 is S1,2 = SupC(G,K1,2), where
K1,2 = E1||E2||G.

2.3 Local Modular Approach

The local modular approach (Queiroz and Cury,
2000), expands the use of the modular property of
each control specification to the modular structure of
the plant. In this approach, similar to the modular
one, one supervisor is created for each control specifi-
cation. However, here only the subsystems which are
affected by the control specification are composed in
the calculus of each modular supervisor, i.e. each
supervisor Sloc

i controls an specific local plant Gloc
i

composed by the subsystems which have at least one
event in common with Ei. Figure 2 shows an example
Gloc

1 = G1||G2, Gloc
2 = G2||G3 and Gloc

3 = G4.

Figure 2: Local modular supervisory use of both mod-
ular property.

The advantage of the local modular approach if com-
pared with the modular approach is the reduction in
the computational effort of the syntheses process and
the size of supervisors. This is possible because not
all subsystems models are used in the calculus of each
supervisor. This results in small supervisors which
enable a lower memory usage implementation, main-
tenance and readability of source code.

3 PLC IMPLEMENTATION PROBLEMS

In Fabian and Hellgren (1998) the follow main
problems-classes based on PLC implementation of su-
pervisory control are exposed:

Signals and events: the straightforward way to im-
plement a state machine in a PLC is to associate
events with rising and falling edges of PLC signals
and represent each state and each event with internal
Boolean variables. Thus, the transitions can be repre-
sented by a Boolean AND between the state variable
and the event variable, as illustrated in Figure 3.

Figure 3: Avalanche effect in a PLC implementation.

Intuitively the uncontrollable (controllable) events
may be associated with signal changes in the PLC
inputs (outputs), which are updated at the beginning
(end) of each PLC scan cycle. However, care must be
taken when making these associations in order to not
introduce the avalanche effect in the implementation.
As illustrated in Figure 3, this effect makes the soft-
ware jump over an arbitrary number of states within
the same PLC scan cycle and may occur particularly
if a specific event is used to trigger many successive
state transitions.

The second problem in this class is the simultaneity
problem. Due to the cyclic execution of PLC, the
input readings are performed periodically and if two
or more signals changes in the PLC input occur be-
tween two scan cycles it is not possible to identify the
order of their occurrence. Figure 4 exemplifies this
problem, the real sequence is ababa, but because of
the interval between two scan cycles the code cannot
detect which event happened first, a or b.

Figure 4: Simultaneity problem.

In addition, if an event changes its state twice be-
tween two scan cycles, the event cannot be identified.
Thus, there are two possible sense of the PLC: abb or
bab.

Causality: the SCT assumes that the plant sponta-
neously generates all events, and the supervisor only
disables events which should not occur in the plant.
However, the plant changes values as a response to

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

signal-changes commanded by the controller (PLC).
Then, for implementation purposes, it is necessary
to adapt the practice to the theory. This means, if
the plant only generates uncontrollable events, which
can not be disabled, and the controller only disables
controllable events, something needs to generate the
controllable events.

Choice: The supervisor obtained through the SCT
is required to be minimally restrictive, so the plant
has the greatest possible freedom behavior satisfying
the specifications. This usually results in a supervi-
sor that in some states has more than one controllable
event enabled. Thus, as a single event must be cho-
sen, we have the problem of the choice. Also, accord-
ing to Malik (2002), the choice can lead to a blocking
implementation of a non-blocking supervisor.

Figure 5 exemplifies this problem, considering that
the current state is 1. If a simple implementation
is made, such as a choice which selects always the
same event in each state, in this example, if event a
is always chosen in states 1 and 3, we can achieve the
final state, but it does not execute event b, which can
mean it will never make a specific kind of product
and this may be not desirable. To sort this problem
out, a choice rule can be alternate choices, such as
the sequence abab.... However, with this sequence the
machine state will be in a dead lock in states 1 and 3
and will never achieve the final state.

Figure 5: Choice’s problem.

Inexact synchronization: During the PLC pro-
gram execution the PLC does not observe the state
of the plant. Thus, the signal-changes occurred in the
PLC inputs during the program execution are asso-
ciated with events just in the next PLC scan cycle.
The inexact synchronization problem happens when-
ever the changed signal invalidates the choice made
by the controller.

In order to illustrate this problem, consider the au-
tomata shown in Figure 6, where the event a is un-
controllable, event b is controllable and the current
state is the initial state. In Figure 6(a) the strings ab
and ba lead to the same state and thus, there is no
difference if event b occurs after or before the detec-
tion of event a. In this case, the language generated
by this automaton is said to be delay insensitivity
(Fabian and Hellgren, 1998). However, in other cases

this order is very important and the automaton does
not have this property. Consider the program shown
in Figure 6(c), which corresponds to the implemen-
tation of the automaton shown in Figure 6(b). If a
rising edge in the PLC input signal associated with
event a is detected, rung 1 performs the transition
to q3. Otherwise, if the event a is not recognized at
the PLC reading stage, b is generated in rung 2 with
the transition to q2. However, while the PLC exe-
cutes the program (before the PLC has applied the
output corresponding to event b), the plant may gen-
erate a signal-change associated with event a, which
invalidates the generation of event b.

Figure 6: Inexact synchronization problem.

4 MICROCONTROLLER IMPLEMENTA-
TION PROBLEMS

Signals and events: the avalanche effect is non ex-
istent in the microcontroller implementation because
of the separation of the data structure that repre-
sents the automaton and the program logic imple-
mentation. But in a PLC implementation this prob-
lem occurs and the solutions can be found in Cruz
(2011) and Leal et al. (2012). The simultaneity oc-
curs in microcontroller environment like in the PLC
one. Thus, the microcontroller implementation also
must take care of the order in which uncontrollable
events occur. However, due to inexistence of a scan
cycle in microcontrollers, the solutions for this plat-
form are broader than that for PLC and the freedom
of development of a microcontroller allows us to over-
come the simultaneity problem.

Causality: this problem must be solved in micro-
controller environment as in PLC environment, the
problem is strictly related to the SCT. In both envi-
ronments there is a need to overcome the fact that the
SCT expects which the plant generate spontaneously

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

all events. This in fact is not true in the implemen-
tation view. The implementation needs something
which generates all events and the plant only gener-
ates the uncontrollable one. Thus, this problem per-
sists in the microcontroller environment.

Choice: like causality, choice is a problem related
to the SCT. This problem exists because the SCT
is required to be minimally restrictive, so the plant
has the greatest possible freedom, which means, the
controller has choices. In PLC some solutions suggest
to make a random choice. The problem is how to
guarantee a good random function. And this reflects
in a good random method implementation in both
environments.

Inexact synchronization: Due to the possibility
of occurrence of an event in the plant that invalidate
the calculated choice of the controller the inexact syn-
chronization is still a problem in microcontroller en-
vironment. However, in the PLC environment we are
limited to the cyclic input, but in microcontroller the
freedom of design given an option to reduce this prob-
lem, a solution will be explained in next section.

5 MICROCONTROLLER IMPLEMENTA-
TION SOLUTIONS

In this work the use of local modular supervisor is
justified by the fact that this approach reduces the
combinatorial explosion of the automata synchronous
composition. The memory safe approach is used
because it represents a compact way to minimize the
memory space used in the microcontroller. In Lopes
et al. (2011) this approaches was applied only to the
monolithic approach. Here the use of both, local mod-
ular supervisor and the memory safe approaches re-
duces one of the major problems in microcontroller
use for supervisory control: the memory space.

The idea of the strategy named memory safe is to
store the data concerning the state transitions of each
supervisor in a vector organized as follows (see Fig-
ure 7). Each state of the automaton is represented
in a sub-vector, which, in turn, describes all output
transitions from each state. The first byte for each
sub-vector determines the amount of output transi-
tions θ from this state. Then we have more θ × 3
bytes to represent each transition in this state (sub-
vector): the first is the number used to denote the
event, and the other two are the target state from
the transition.

A priori, this method is limited to 256 events, 216− 1
states and 255 output transitions for each state in this
basic form. However this method can be adapted
to accept a large number of events, states and out-
put transitions for each state. The memory occupa-
tion for each automaton is given by Cmemorysafe

mem =

Figure 7: Memory safe strategy: a vector stores the
data set of an automaton.

Tchar×(s+3×t+e), where s is the number of states in
the automaton, t is the total number of transitions in
the automaton and e is the number of different events
in the automaton. The s+3×t component represents
the vector used in Figure 7. The other component e
represents an another vector with length e, for each
automaton, which is used to keep the information if
each event is controllable or not.

5.1 Implementing Solutions

In this work we look through the PLC implementation
problems and review solutions for PLC environment.
After that we analyse which of these problems per-
sist in microcontroller environment. Now we adapt
the PLC environment solutions to the microcontroller
environment and extend these solutions with new op-
tions.

In order to solve the choice problem Leal et al. (2009)
proposed the use of a random bit to select a control-
lable event. In Cruz (2011) this proposed was im-
proved to use a random number. It is well-known that
microprocessors are deterministic and cannot pro-
duce true random numbers, generating only pseudo-
random numbers. To overcome this problem we pro-
posed the use of external values. Therefore, random
quality is guaranteed by an external value. Here we
extend this solution by two types of random func-
tions for microcontroller: (1) use an input value from
an analogical-digital (AD) converter which reads a
thermistor value as a random-number; (2) a pseudo-
random function f(x) = x ∗ (−35) + 53, where x is
the last result for the f(x) and the initial value from
x, called seed, is created by the AD input. In the
first case we had two problems, the low variety of the
random number and the delay to get values. In the
second case the use of a fixed seed is not satisfactory
because at every restart the system makes the same
sequence. Thus, we propose to combine these two

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

methods in order to use a random function f(x) in
which x is a seed that dynamically receives a value
from the AD input. This method is very quick and
provides high variety of distict sequences.

Another solution proposed to the choice problem is
the use of a a global queue for all controllable events.
When the choice problem occurs, the queue is con-
sulted and the next enable controllable event in the
queue order is selected. After all queue element are
used the queue is restarted. For an example in a
queue Q = {a, b, d}, if the state S1 has the first choice
problem between a and b the selected option is going
to be a, suppose the second choice problem in the
state S2 between a and b again but now the next el-
ement in the queue is b so b is selected. If the third
selection is between a and b again, so the next queue
element is d, however d is not an option, because d is
not enabled, then we jump the d in queue, we restart
the queue at this point because all queue elements
are used, and we try the next which is a, so a is se-
lected. If we use in the example of Figure 5 the queue
Q = {a, b} starts in state 1 the state sequence is go-
ing 1, 3, 1, 3, 1, ... and this will never achieve a final
state, in other words this solution leads to a blocking
control action.

To solve this blocking control problem we propose
the use of a local queue, which works similarly to a
global queue, but we have a queue for every state
responsible to the choice problem. In a local queue
the choice made in a state does not affect the other
states and this guarantees that all possible transi-
tions can be used, such as a deep search in a tree.
In the previous example the sequence is going to be
1, 3, 4, 1, 2, 4, 1, 3, 1, The problem with local queue
is the memory space required because all states are
likely to be the choice problem and need to keep a
queue.

We also propose a hybrid approach between the lo-
cal or global queue and the random selection. In this
hybrid method the queue order is randomly gener-
ated when the queue restarts. We call these two
approaches random local queue and random global
queue. In random global queue we solved the ”lock
problem” using less memory space than in the solu-
tion adopted for the random local queue. The ran-
dom local queue guarantees a non-deterministic ex-
ploration of the alternative paths of the supervisor
and at the same time guarantees that all possible
transitions may be used, but it still requires a large
memory space. Other works addressed the synthesis
and optimization of nonblocking supervisors based on
Petri nets (Hu et al., 2012; Hu et al., 2011; Hu and
Li, 2010; Hu and Li, 2009).

To solve the simultaneity problem we aim to reduce
the time between each input reading. To do that we

offer two solutions: (1) use a timing interrupt to read
all inputs and; (2) use an external interruption to ac-
tivate the read input method. In both cases the read
events are stored in an input buffer. In the timing
interrupt the interval between two external reads is
configured according to the needs raised by the de-
signer. In the external interruption this feeling is not
required and the read of external stimuli is made just
in time.

For the inexact synchronization problem we verify if
the input buffer from the previous solution is free just
before the application of a selected controllable event.
If the buffer is not free, which means that a uncontrol-
lable event had happen, we refresh the current state
of the state machine with the uncontrollable events
and recalculate the controllable event to be executed.
Otherwise if the input buffer is free we apply the se-
lected controllable event. It drastically reduces the
problem because diminishes the time between apply
the controllable event and read the plant state.

To solve the causality problem we can adopt the gen-
eral control system structure proposed by Queiroz
and Cury (2002b). This control structure is based
on a three level hierarchy (see Figure 8) that exe-
cutes the modular supervisors’ concurrent action and
interfaces the theoretical model with the real system.
In this approach, the controllable events that are not
disabled by the modular supervisors are generated in
the layer named ”Product Systems”, which consists of
the implementation of the asynchronous plant mod-
els. Thus, using this approach allow us to keep the
hypothesis that the plant generates all events, and
that the supervisor dynamically disables events that
the plant might otherwise have generated. The other
advantage of implementing the product system is that
the supervisor can be reduced, however, it is still nec-
essary to keep the product system in parallel with the
supervisor (Cruz, 2011).

Figure 8: Control system basic structure (Queiroz
and Cury, 2002b)

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

5.2 Execution Logic

The execution logic proposed for microcontrollers is
to perform all the state transitions, and then dynam-
ically update the disabling of controllable events, so
no need to maintain a static list of events disabled in
every state. Thus, we use only a list of events asso-
ciated with each of the automata. At run time, the
microcontrolller computes the disabled events at the
current state.

5.3 Comparative Results

Table 1 presents the number of states and transitions
of all modular supervisors for the problem presented
by Lopes et al. (2011). And the Table 2 shows the
number of states and transitions of all local modular
supervisors for the same problem.

Table 1: Number of states and transitions of the mod-
ular supervisors

Supervisors States Transitions

S1 72 444
S2 6 448 2892
S3 132 844
S4 132 844
S5 180 924
S7 72 438
TOTAL 1036 6386

Table 2: Number of states and transitions of the local
modular supervisors

Supervisors States Transitions

S1 4 10
S2 6 121 360
S3 33 112
S4 33 112
S5 30 74
S7 12 29
TOTAL 233 697

Table 3 represents the total number of states and
transitions in each case for the problem presented by
Lopes et al. (2011). In the modular and local mod-
ular approach the result is the sum of all supervi-
sors states and transitions. This table also shows the
number of bytes required to represent these super-
visors in three approaches: (1) Matrix, where mem-
ory is Cmatrix

memory = s × s + e; (2) chained list, pre-
sented by Barreta and Torrico (2008), where memory
is Cchained list

memory = 2×s+5×s+e and; (3) the memory
safe, introduced by Lopes et al. (2011), where mem-
ory is Cmemory safe

memory = s+ 3× s+ e.

Table 3: Comparative Results for a case study

Supervisory States Transitions Matrix Chained Memory
Lists Safe

Monolithic 3420 11808 11696423 65903 38867
Modular 1036 6386 1073319 34025 20217
Local Modular 233 697 54312 3974 2347

5.4 Solutions Test

In the first step we tested the supervisors using a
hardware that emulates a manufacturing plant. This
hardware consists of LEDs (Light-Emitting Diode)
and buttons. The buttons emulate the uncontrollable
events from the plant and the LEDs show the control
commands sent to the plant.

In the second step we tested the supervisors using a
hardware that is connected to a computer software
which emulates a manufacturing plant (a kind of vir-
tual plant). This virtual plant sends by serial port in
different rates the response of the plant to the con-
troller commands. The virtual plant runs the plant
subsystems models automata with a list of uncontrol-
lable events to execute. These uncontrollable events
are generated by the virtual plant if they are enabled.

The solutions to simultaneity and inexact synchro-
nization involve making the processor fast enough to
avoid the problem. Consequently, it is important to
know how fast the controller reads its inputs and re-
acts to these stimuli. In addition it is important to
know how fast the controlled system generate stimuli.
The present work reduces the likelihood of the prob-
lems still occurring, solves the choice problem and ap-
proaches implementation methods in microcontroller
environment.

In all previous tests the supervised system had a ex-
pected behaviour and none of the cited problems had
taken place. By those tests we have validate the solu-
tion presented. In order to have a tool which imple-
ments this approach, we extended the Nadzoru code
generator tool presented by Lopes et al. (2011). This
tool is open source, free of charge and it is available
at http://gitorious.org/nadzoru.

6 CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

The problems presented by Fabian and Hellgren
(1998) in the PLC environment also exist in the mi-
crocontroller environment. The solutions presented
by Leal et al. (2009), Cruz et al. (2009), Cruz (2011)
and Leal et al. (2012) for PLC can be applied in the
microcontroller environment. Our work extends these
solutions making a set of one which helps to make a
customized code for real needs for each kind of appli-

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

cation.

The use of local modular approach represents a low
memory space required solution. To maximize this
low cost the memory safe approach represents a com-
pact way to store the supervisors data.

6.2 Future Works

In future works the authors aim to achieve a more
significant reduction in the space memory used in the
memory safe method. Another research opportunity
is to verify the possible use of a reduced monolithic
supervisor. It is also necessary to continue developing
nadzoru to extend its features.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of
the Santa Catarina State University.

References

Barreta, R. D. and Torrico, C. R. (2008). Máquinas
de mealy e moore para implementação de con-
trole supervisório de sistemas a eventos dis-
cretos em microcontroladores, XVII Congresso
Brasileiro de Automática - CBA2008. .

Brandin, B. A. (1996). The real-time supervisory con-
trol of an experimental manufacturing cell, IEEE
Transactions on Robotics and Automation, v. 12,
n. 1, pp. 1-14 .

Cruz, D. L. L. d. (2011). Metodologia para imple-
mentação de controle supervisório modular local
em controladores lógicos programáveis, Master’s
thesis, Santa Catarina State University.

Cruz, D. L. L. d., Leal, A. B., Rosso Jr., R.
S. R. and Rozario, J. G. d. (2009). Proposta
de implementação de controle supervisório em
controladores lógico programáveis, IX Simpó-
sio Brasileiro de Automação Inteligente (SBAI
2009). Anais do IX Simpósio Brasileiro de Au-
tomação Inteligente, v. 9 .

Diogo, R. A., Santos, E. A., Vieira, A. D.,
de F.R. Loures, E. and Busettia, M. A. (2011). A
computational control implementation environ-
ment for automated manufacturing systems, In-
ternational Journal Of Production Research 49.

Eyzell, J. M. and Cury, J. E. R. (2001). Exploit-
ing symmetry in the synthesis of supervisors for
discrete event systems, IEEE Transction on Au-
tomatic Control, vol.46, pp. 1500-1505 .

Fabian, M. and Hellgren, A. (1998). Plc-based im-
plementation of supervisory control for discrete

event systems, Proc. of the 37th IEEE Confer-
ence on Decision and Control, v. 3, pp. 3305-
3310 .

Hu, H. and Li, Z. (2009). Efficient deadlock preven-
tion policy in automated manufacturing systems
using shared resources, International Journal of
Advanced Manufacturing Technology 40(5).

Hu, H. and Li, Z. (2010). Synthesis of liveness en-
forcing supervisor for automated manufacturing
systems, Journal of Intelligent Manufacturing
21(4).

Hu, H., Zhou, M., and Li, Z. (2011). Optimization of
supervisor for deadlock resolution in automated
manufacturing systems, IEEE Transactions on
Automation Science and Engineering 8(4).

Hu, H., Zhou, M. and Li, Z. (2012). Liveness and
ratio-enforcing supervision of automated manu-
facturing systems using petri nets, IEEE Trans-
actions on Systems, Man, and Cybernetics-Part
A: Systems and Humans 42(2).

Leal, A. B., Cruz, D. L. L. and Hounsell, M. S.
(2009). Supervisory control implementation into
programmable logic controllers, 14th IEEE In-
ternational Conference on Emerging Technolo-
gies and Factory Automation - ETFA .

Leal, A. B., Cruz, D. L. L. and Hounsell, M. S. (2012).
Manufacturing System, Vol. 1, INTECH, chap-
ter PLC-based Implementation of Local Modular
Supervisory Control for Manufacturing Systems.

Lopes, Y. K., Harbs, E., Leal, A. B. and Rosso Jr.,
R. S. R. (2011). Proposta de implementacao
de controle supervisorio em microcontroladores,
X Simpósio Brasileiro de Automação Inteligente
(SBAI). Anais do X Simpósio Brasileiro de Au-
tomação Inteligente, v. 10 .

Malik, P. (2002). Generating controllers from
discrete-event models, F. Cassez, C. Jard, F.
Laroussinie, M. D. Ryan, Proc. of MOVEP .

Queiroz, M. H. and Cury, J. E. R. (2000). Modular
control of composed system, Proccedings of the
American Control Conference, Chicago .

Queiroz, M. H. and Cury, J. E. R. (2002a). Controle
supervisório modular de sistemas de manufatura,
Sba Controle & Automação 13(2).

Queiroz, M. H. and Cury, J. E. R. (2002b). Synthe-
sis and implementation of local modular super-
visory control for a manufacturing cell, Procced-
ings of the Workshop on Discrete Event Systems,
pp.103-110 .

Queiroz, M. H. d. (2004). Controle Supervisório Mod-
ular e Multitarefa de Sistemas Compostos, PhD
thesis, Universidade Federal de Santa Catarina.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Ramadge, P. J. G. and Wonham, W. M. (1989). The
control of discrete event systems, Proceedings
IEEE, Special Issue on Discrete Event Dynamic
Systems 77: 1202–1218.

Ramadge, P. J. and Wonham, W. M. (1987). Super-
visory control of a class of discrete event process,
SIAM J. Control and Optimization 25(1): 206–
230.

Silva, D. B., Vieira, A. D., Loures, E. F. R., Busetti,
M. A. and Santos, E. A. P. (2011). Dealing with
routing in an automated manufacturing cell: a
supervisory control theory application, Interna-
tional Journal Of Production Research 49(16).

Sipser, M. (2005). Introduction to the theory of com-
putation, 2 edn, Course Technology.

Wonham, W. M. and Ramadge, P. J. (1988). Mod-
ular supervisory control of discrete event sys-
tem, Mathematics of control, signals and sys-
tems, vol.1, pp. 13-30 .

Yalcin, A., Khemuka, A. and Deshpande, P. (2005).
Modelling inter-task dependencies and control of
workflow managements systems based on super-
visory control theory, International Journal Of
Production Research 43(20).

Zhong, H. and Wonham, W. M. (1990). On the con-
sistency of hierarchical supervisionin discrete-
event systems, IEEE Transction on Automatic
Control, vol.35 .

