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Abstract

The three-dimension (3D) multiple-input multiple-output (MIMO) array antennas have

been proposed to reduce the inter-cell interference in cellular networks by adjusting the

beam direction at both horizontal and vertical dimensions. To reduce the size of 3D

MIMO array antennas, millimetre wave (mmWave) spectrum is desirable to be used. As

the penetration losses of mmWave transmissions are much higher than those of microwave

transmissions, the indoor blockages have a significant impact on the link and interference

modelling in mmWave 3D MIMO indoor small-cell networks, which is fundamental for

the network performance analysis. We note that the indoor blockage layouts vary sig-

nificantly in different indoor environments, and the orientations and lengths of indoor

blockages may have physical influences on signal transmissions. Accordingly, conventional

measurement-based methods (e.g., ray-launching based and ray-tracing based methods)

would be inapplicable for statistical interference modelling for general indoor environments

with random indoor blockage layouts. Stochastic geometry has been widely used in the

interference modelling for large-scale randomly-deployed outdoor heterogeneous networks,

but has not been sufficiently exploited for indoor MIMO small-cell (SC) networks. In this

report, we investigate the interference modelling for a single-floor densely deployed indoor

SC network with randomly located interior walls under the stochastic-geometry frame-

work. The interior wall blockages are modelled as a random process of straight lines in

a two-dimension (2D) plane. The centres of the straight lines are distributed following a

Poisson point process (PPP), their orientations are limited in two orthogonal directions

in a 2D plane with equal probabilities, and their lengths follow a uniform distribution in a

certain range. Based on this stochastic wall model, the line-of-sight (LOS) and none-LOS

(NLOS) probabilities for an arbitrary link in the indoor SC network are obtained. By

combining the LOS and NLOS probabilities with the log-distance path loss model and

the Rayleigh small-scale fading, we derive the probability distribution of the aggregate

interference power received by a typical user equipment (UE) that locates at the centre of

the single-floor indoor network model. Based on the obtained distribution, the coverage

probability of the typical UE is derived and validated by Monte Carlo simulations. The

numerical results indicate that there exits an optimal SC base station (BS) density for

maximizing the coverage probability of the typical UE, and this optimal SC-BS density

is dependent on the interior blockage density. The indoor SC network interference model

obtained in this report will be extended to a 3D indoor SC network in conjunction with

the 3D MIMO antenna patterns designed in Work Package 2 to provide fundamental un-

derstanding of the network performance gains achievable from the dense deployment of

3D MIMO SCs in 3D indoor environments.
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1 Introduction

The mobile traffic demand is increasing exponentially with the growing number of mo-

bile devices. According to [1], the majority (80%) of the mobile traffic demand occurs

indoors. The traditional solution where indoor wireless communications are served by out-

door base stations will no longer be able to meet such a huge demand [2]. Consequently,

the ultra-dense deployment of indoor small-cell (SC) networks has been proposed to in-

crease the indoor network capacity. However, the ultra-dense deployment of indoor SCs

will also increase the inter-cell interference. Therefore, three-dimensional (3D) multiple

input multiple output (MIMO) array antennas have been proposed to reduce the inter-cell

interference in dense cellular networks by adjusting the beam direction at both the hori-

zontal and vertical dimensions. To reduce the size of 3D MIMO array antennas, millimetre

wave (mmWave) spectrum becomes desirable to be used. The mmWave communication

has also been considered as one of the promising techniques to enhance the indoor net-

work capacity in the forthcoming 5G networks by providing extra unlicensed spectrum

resources [3].

As the penetration losses of mmWave transmissions are much severer than those of

microwave transmissions, the indoor blockages (e.g., wall blockages, furniture, human bod-

ies) will have a significant impact on the interference modelling for indoor mmWave SC

networks [4], which makes it difficult to accurately predict the network performance [5],

such as coverage probability. The indoor blockage effects are dominated by the interior

wall blockages due to potentially dense interior walls located in indoor environments.

Conventionally, the effects of blockages are incorporated into the log-normal shadowing

model based on measurements, along with the effects of diffraction, reflection, and scatter-

ing [6]. However, the measurement based approach has some inherent drawbacks. Firstly,

the empirical operation of measurement devices is required for establishing the model.

This not only limits its general applicability but also ignores the specific characteristics

of scenarios, including the various lengths and densities of interior walls [7]. Secondly,

the distance dependency of wall-blockage effects is not captured by the measurement

based approach [8]. Indeed, the longer link length is likely blocked by more interior wall

blockages, resulting in severer shadow fading experienced by the indoor transmission [9].

Recently, the concepts and tools from random shape theory have been utilized to

generate blockage models without the need of environmental specific data [10]. As a

branch of stochastic geometry, random shape theory models the blockages in wireless

cellular networks as random processes [11,12]. In [9], the authors investigated the effects

of outdoor blockages by further modelling the buildings as a random project process. The
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buildings were assumed as rectangles with random positions and orientations. Although it

established a theory to model blockages aiming for the accurate performance estimation

of networks, it was developed for urban outdoor environments only. Additionally, the

assumption of random blockage orientations sacrifices the characteristics of realistic layout

of interior wall blockages, which are usually vertical and horizontal in reality (e.g., ceilings

and floors). Hence, the blockage model proposed in [9] is not particularly suitable for

analysing indoor wireless communications.

Furthermore, in [2,7,13], the authors extended the stochastic outdoor blockage model

to indoor environments. The authors in [2, 7] established the indoor wall blockage model

by randomly generating the walls as straight lines in a plane, of which the orientations of

wall blockages are assumed in the horizontal or vertical direction in a 2D plane. However,

the authors only applied the proposed model on networks with a specific arrangement

of transmitters, in which there are four transmitters located at the four corners of the

considered rectangular indoor scenario, respectively. This is a very limited utilization for

indoor SC networks. The work in [13] presented a wall blockage model based on Poisson

line process, through which a building was randomly divided into rectangular rooms.

Although the authors investigated the general application of their wall blockage model on

the analysis of indoor networks, they ignored the effects of distance-dependent path loss.

This may result in an inaccurate estimation of network performance.

In this deliverable, we present a novel approach to accurately model the aggregated

interference in indoor dense SC networks and analyse indoor network performance by

considering both the effects of wall blockages and distance-dependent path loss. Firstly,

by using tools from random shape theory, we model the interior wall blockages as straight

lines whose centers form a PPP. In terms of the wall orientation, a 2D coordinate system

is defined with the vertical and horizontal axes. By taking realistic layouts of interior

walls into account, the wall orientation is assumed to be facing the horizontal or vertical

axis with an equal probability. Based on the proposed interior wall blockage model,

the distribution of penetration loss caused by walls on a link is derived. Then, a path

loss model incorporating both the blockage-based and distance-dependent path loss is

established. Finally, the composite path loss model is applied to investigate the coverage

probability of a typical user equipment (UE) in indoor dense SC networks. The results

indicate that there exits an optimal SC-BS density for maximizing the coverage probability

of the typical UE, and this optimal SC-BS density is dependent on the interior blockage

density.

The rest of the deliverable is organised as follows. The system model is illustrated

in Section 2. Then the wall blockage model is presented and its analytical tractability
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is demonstrated, and the coverage probability for the indoor scenario with impenetrable

blockages is derived in Section 3. The simulation and numerical results are presented to

validate our proposed indoor blockage modelling approach and to analyse the coverage

probability of indoor dense SC networks in Section 4. Section 5 presents the conclusion

and furture works.

2 System Model

In this section, we introduce our system model for analysing the performance of indoor

dense SC networks. We focus on the downlink propagations for a typical indoor UE,

which is only served by indoor SCs. The key assumptions are presented as follows: we

consider a stochastic indoor SC network, where the SC base stations form a homogeneous

PPP with density µ. All SC base stations are assumed on the ground plane. The typical

UE is set at the centre of the considered indoor scenario. This work only considers the

indoor scenarios with rectangular shapes. A tractable Boolean scheme of straight lines

is employed to generate interior wall blockages within the indoor scenario in a 2D plane.

The width (thickness) of an interior wall are ignored here because the width is much

smaller as compared to the length of the wall. The wall length is assumed to follow an

arbitrary distribution fL(l) with the average length E[L]. The centres of wall blockages

form an independent PPP with density λ. The orientation of each straight line (which

represents an interior wall) is assumed to be a binary random variable taking the value

of 0 or π/2 with an equal probability.

We employ a path loss model that incorporates both the distance-dependent and

blockage-based path loss. The small scale fading is assumed as Rayleigh fading. Accord-

ingly, the received power of the i-th link is

Pi =
PThiSi
dαi

, (1)

where Pi is the received signal power of the i-th link, the transmitted power is assumed

as a constant for each SC base station, denoted by PT , the variable hi is the power gain

of Rayleigh fading, which follows an exponentially distribution with a unit mean, denoted

by h ∼ exp(1), the variable dαi represents the distance-dependent path loss of the i-th link

with pathloss exponent α and length di, and Si is the blockage-based path loss caused

by interior wall blockages on the i-th link. The thermal noise is neglected hereafter for

analytical tractability.
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3 Coverage Performance Analysis

This section will demonstrate the effects of interior wall blockages and the coverage prob-

ability of the indoor SC network with impenetrable walls. Firstly, we investigate the

effects of wall blockages. Then, the connectivity between a SC base station and UE is

analyzed for the case of impenetrable wall blockages. Finally, the expression of coverage

probability is derived for an indoor dense SC network considering impenetrable interior

wall blockages.

3.1 The Effects of Wall Blockages

The signal power attenuation ratio caused by wall blockages of the i-th link is presented

as Si =
∏Ki

k=1 ωi,k, where the variable Ki denotes the number of interior walls that the i-th

(i ∈ Z+) link intersects, and ωi,k denotes the attenuation caused by the k-th (1 ≤ k ≤ Ki)

wall to the i-th link. Note that the value range of the variable ωi,k is [0, 1]. For simplicity,

we assume that all the interior walls have the same attenuation, i.e., ωi,k = ω, hence

Si =
∏Ki

k=1 ω. Therefore, it is necessary to identify statistical distribution for the number

of interior walls first.

As mentioned in Section 2, we assume that the orientation angles of wall blockages are

binary random variables taking values in the set
{

0, π
2

}
with equal probabilities. Based

on the system model and the assumptions of walls in Section 2, the average number of

interior walls that each link intersects can be calculated following Theorem 1.

Theorem 1. Under the assumption that the wall orientation angle takes value in the set

of
{

0, π
2

}
with an equal probability, the average number of interior walls that the i-th link

intersects can be calculated as

E[Ki] =
1

2
(|sin(ϕi)|+ |cos(ϕi)|)λE [L] di (2)

where ϕi is the angle between the i-th link and the horizontal axis. It is uniformly dis-

tributed in (0, 2π]. The variable di denotes the length of the i-th link. The variables λ and

E [L] are the density and the average length of walls, respectively.

Proof. As shown in Fig. 1, the i-th link is intersected by the wall if and only if its center

falls into the parallelogram region ABCD (or MNQP ). The number of walls that the

i-th link intersects is equal to the number of wall-centre points falling into the region,

which is given by Ki = λlidi |sin γi|. We define the variable γi as the angle between a wall

and the i-th link, which is uniformly distributed in [0, π].
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Figure 1: OR represents the i-th link with length di. |AB| and |CD| are two examples

of walls each with the vertical orientation angle, denoted by θ = π
2
. |MN | and |PQ| are

two examples of walls each with an horizontal orientation angle, denoted by θ = 0. The

variable γi is the angle between a wall and the i-th link, and the variable φi denotes the

angle between the horizontal axis and the i-th link. The points O and R represent the

positions of the typical UE and the base station, respectively. (a) An example with the

wall orientation angle θ = π
2
. (b) An example with the wall orientation angle θ = 0.

Under the assumption of wall orientation in Section 2, the orientation angle of the

wall blockage is denoted by θ = 0 or π
2
. For ϕi ∈

(
0, π

2

]
, we can obtain the relationship

between γi and ϕi from Fig. 1, given by

γi =

{
π
2
− ϕi, when θ = π

2
,

ϕi, when θ = 0.
(3)

Therefore, the probability density function (PDF) fΓ(γi) of γi is given by

fΓ(γi) =
1

2
δ[γi − (

π

2
− ϕi)] +

1

2
δ[γi − ϕi] (4)

where δ is Dirac function. When ϕi is within
(
π
2
, 2π
]
, the function fΓ(γi) is the same as

in equation (4). The derivation is omitted here for brevity.
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Following Theorem 1 of the work [9], the expected value of Ki can be calculated

E [Ki] =

∫
L

∫
Γ

λlidi |sin γi| fL(li)fΓ(γi)dl dγ

=
1

2
(|sin(ϕi)|+ |cos(ϕi)|)λE [L] di

(5)

where fL(li) is the probability density function of the length of an interior wall.

According to the independent thinning, the number of points falling into the region

ABCD (or MNQP ) is still a PPP [14]. Moreover, Theorem 1 provides the average

number of wall blockages on each link. Therefore, we can obtain that the number Ki of

walls intersected by the i-link is a Poisson random variable with a mean E[Ki].

As aforementioned, the attenuation is expressed as Si =
∏Ki

k=0 ω, where Ki is the

number of walls intersected by the i-th link. Now with the distribution of the number of

interior walls intersected by the i-th link, the signal attenuation caused by wall blockages

to the i-th link can be investigated.

Based on the signal attenuation Si caused by interior wall blockages, we analyse the

performance of indoor wireless networks. In the following, we will investigate the case of

mmWave networks, since wireless transmissions in this frequency range are particularly

sensitive to blockages. For the simplicity of analysis, we assume that the wall blockages

are impenetrable, i.e., the worst case scenario for wireless signal propagation. In this

case, a UE is only connected to the SC base stations with LOS links (namely visible

transmitters). With impenetrable wall blockages, the signal attenuation ratio caused by

wall blockages can be modeled as a Bernoulli random variable according to whether the

link is blocked or not.

Corollary 1. For millimetre wave signals, in indoor environments, the wall blockages are

assumed as impenetrable. The signal attenuation ratio Si is a Bernoulli random variable.

The conditional probability of Si = 1 is presented as P {Si = 1|ϕi} = e−λE[L]diβ(ϕi), where

β(ϕi) = 1
2

(|sin(ϕi)|+ |cos(ϕi)|).

The proof is straightforward and is omitted here. According to Corollary 1, it is

conveniently to obtain the conditional probability of a wireless link experiencing LOS

propagation in indoor environments with interior wall blockages.

Corollary 2. In indoor environments with interior wall blockages, the probability that the

i-th link is LOS is given by PLOS = e−λE[L]diβ(ϕi).
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Figure 2: The wall blockages are generated as the black straight lines. All the small cell

base stations are presented by the red points. The typical UE is located at the center of

the considered square area. For the typical UE, all the LOS links are shown as the red

dotted lines. Assume the UE is served by the nearest LOS small cell base stations shown

as the blue solid line.

3.2 Connectivity

In this section, we will investigate the link connectivity between the UE and SC base

stations. We assume that the typical UE is connected to the nearest LOS SC base station.

The distance from the UE to the closest LOS SC base station is denoted by R. If there

are more than one SC base stations with a distance R to the UE, then the UE randomly

selects one of them to connect to. An example of the link connectivity is shown as in Fig.

2.

Now, we define a 3D sphere B (O, r), where the radius r is less than R and the center

O is the typical UE’s position. Within the sphere, the SC base stations are distributed fol-

lowing a PPP with the mean of πr2µ [14], where µ denotes the density of base stations. we

define the event E1 = {There are n SC base stations within the sphere B (O, r) .}, where

n = 0, 1, 2, ..., then the probability P (E1) of event E1 is given by

P (E1) =
e−πr

2µ(πr2µ)n

n!
. (6)

The necessary and sufficient condition of a successful connectivity for

the typical UE is that all the n SC base stations within the above de-

fined sphere are not visible to the typical UE. We define the event as E2 =

{All the n SC base stations within the sphere B (O, r) are not visible to the typical UE.}.
The conditional probability of event E2 is the probability that all the n SC base stations
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are non-line-of-sight (NLOS) to the typical UE under the condition of event E1. The

conditional probability P (E2) of event E2 is given by

P (E2|E1) =

[∫ 2π

0

∫ r

0

(1− PLOS)
2t

r2

1

2π
dtdϕi

]n
=

[
1− 2

r2

∫ 2π

0

M [β(ϕi)]
1

2π
dϕi

]n
,

(7)

where M [β(ϕi)] = 1−{β(ϕi)E[L]λr+1}e−β(ϕi)E[L]λr

{β(ϕi)E[L]λ}2 , and PLOS is obtained from Corollary 2.

Equation (7) follows the fact that all points in the sphere are independent and uniformly

distributed according to a PPP. The link angle ϕi is uniformly distributed in (0, 2π]. The

blockages that intersect each individual link are assumed to be independent.

Following Theorem 8 of the work in [9], the distribution of the distance from the

typical UE to the nearest visible SC base station is obtained as

P (R > r) = P (E2) =
∞∑
n=0

P (E2|E1)P (E1)

=
∞∑
n=0

[
1− 2

r2

∫ 2π

0

M [β(ϕi)]
1

2π
dϕi

]n
e−πr

2µ(πr2µ)n

n!

= e
−2πµ

[ ∫ 2π
0 M [β(ϕi)]

1
2π

dϕi

]
(a)
≈ e

−2πµM

[
Eϕi [β(ϕi)]

]
= e−2πµM[β̃],

(8)

where β̃ =
∫ 2π

0
β(ϕi)

1
2π

dϕi = 2
π

is the expected value of β(ϕi). In step (a), we take an ap-

proximation in order to obtain a closed form expression and M [β̃] =
1−{β̃E[L]λr+1}e−β̃E[L]λr

{β̃E[L]λ}2 .

Following equation (8), the probability density function of R can be calculated directly

by differentiation, as presented in Theorem 2.

Theorem 2. The typical UE is connected to one of the nearest visible small cell base

stations at a distance R away from the typical UE. The probability density function of R

is given by

fR(r) = 2πµre−[2πµM [β̃]+E[L]λrβ̃] (9)

Proof. Equation (9) is obtained by differentiating 1− P (R > r) with respect to r, which

is omitted here for brevity.
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3.3 Coverage Probability

The coverage probability Pc(T ) is defined as the probability that the signal-to-interference

ratio (SIR) received at the typical UE is larger than the threshold T , i.e.,

Pc(T ) = P (SIR > T ). (10)

The coverage probability is an important metric for the analysis of network perfor-

mance, which is influenced by the density of SC base stations, and the density and topology

of interior walls. Moreover, another influential factor is the user-cell association strategy

for a UE to select a SC base station to connect to. Usually a UE is connected to the SC

base station with the strongest downlink received power or the maximum received SIR.

We assume that the typical UE is served by the nearest visible SC base station, which

is referred to as the serving base station. The downlink transmissions from other BSs

are considered as interference to the typical UE. If there is no visible SC base station to

the UE, then the UE is not covered, i.e., without a successful connectivity. For analyt-

ical simplicity, we assume that the number of wall blockages on each individual link is

independent. The coverage probability is given in Theorem 3.

Theorem 3. The typical UE selects the nearest visible SC base station as its serving base

station. Assuming that the number of wall blockages on each link is independent and the

SIR threshold is T , then the coverage probability Pc(T ) is given by

Pc(T ) =

∫ D

0

exp

(
−2πµ

∫ ∞
r

[
Trαe−λE[L]tβ̃

tα + Trα

]
tdt

)
fR(r)dr, (11)

where β̃ = 2
π
, and the parameter D is the maximum link length within an indoor scenario.

Proof. According to the pathloss model described in Section 2, the downlink SIR of the

typical UE can be presented as

SIR =
hjSjr

−a∑
i∈{Z}/j,di∈(0,D)

hiSid
−α
i

, (12)

where the j-th link is the successful connectivity from the nearest visible SC base station

to the typical UE given that the distance from the typical UE to the closest visible SC

base station is R = r. The variable di is the length of the i-th link, and r < di < D.

The variable D denotes the maximum length of links within the indoor scenario, and is

defined as D =

√
Ls2+Ws

2

2
, in which the parameters of Ls and Ws are the length and width

of the indoor scenario, respectively. For improving the accuracy of analysis, the value of
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link length di is taken according to the specific indoor scenario size. The variable Si is the

wall signal attenuation ratio of the i-th link. The fading power loss denoted by hi (and

hj) is following a unit-mean exponential distribution.

Therefore, the coverage probability conditioned on the distance from the typical UE

to the closest SC base station is computed as

P {SIR > T | R = r} = P

hj >
 ∑
i∈{Z}/j,di∈(0,D)

hiSid
−α
i

Trα


= E

exp

−( ∑
i∈{Z}/j,di∈(0,D)

hiSid
−α
i

)
Trα


= E

 ∏
i∈{Z}/j,di∈(0,D)

ESi,hi

[
exp

(
−hiSid−αi Trα

) ]
(a)
= E

( ∏
i∈{Z}/j,di∈(0,D)

Ehi

[
exp

(
−hid−αi Trα

) ]
∫ 2π

0

P (Si = 1|ϕi)
1

2π
dϕi +

∫ 2π

0

P (Si = 0|ϕi)
1

2π
dϕi

)
(b)
≈ E

( ∏
i∈{Z}/j,di∈(0,D)

Ehi

[
exp

(
−hid−αi Trα

) ]
e−λE[L]rβ̃ + 1− e−λE[L]rβ̃

)

=E

 ∏
i∈{Z}/j,di∈(0,D)

1− Trαe−λE[L]diβ̃

dαi + Trα


(c)
= exp

(
−2πµ

∫ ∞
r

[
Trαe−λE[L]tβ̃

tα + Trα

]
tdt

)
,

(13)

where step (a) follows Corollary 1, Si follows the Bernoulli distribution with the con-

ditional probability of P (Si = 1|ϕi), step (b) takes an approximation for reducing the

computing complexity, which is shown as∫ 2π

0

P (Si = 1|ϕi)
1

2π
dϕi ≈ e−λE[L]rEϕi [β(ϕi)] = e−λE[L]rβ̃.

Step (c) is obtained from the probability generating functional (PGFL) of the PPP that

models the spatial distribution of SC base stations.

Based on equation (13) and Theorem 2, the unconditional coverage probability is

formulated by deconditioning the variable r as follows,

P {SIR > T} =
∫ D

0
P {SIR > T | R = r} fR(r)dr, (14)
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where the parameter D is the maximum link length within the considered indoor scenario,

given that the typical UE is located at the centre of the considered network area as shown

in Fig. 2.

According to Theorem 3, although it is difficult to obtain the closed form expression

of coverage probability, the coverage probability expression in equation (11) can be used

to numerically investigate the distribution of coverage probability of indoor dense SC

networks with interior wall blockages. In the next section, Theorem 3 will be employed

to analyse the coverage performance of indoor cellular networks with impenetrable wall

blockages.

4 Simulation Results

In this section, we present the numerical performance-evaluation results of dense cellular

networks in indoor environments. Firstly, the analytical results obtained in Section 3

will be validated by comparing with Monte Carlo simulation results. Then the coverage

performance of indoor dense SC networks will be analysed based on both numerical and

simulation results.

We validate the average number of walls obtained in equation (2) in Theorem 1 by

comparing it with Monte Carlo simulation result as shown in Fig. 3. The analytical

average number of walls that each link intersects is obtained from Theorem 1. In the

comparisons, we fix the link length at 20 meters and consider three different values of

the average wall length E[L]: 3 meters, 5 meters and 7 meters. Considering that the

considered network scenario is symmetric with respect to its central point (the position

where the typical UE is located) as shown in Fig. 2, only the results in the interval

(0, π/2] of the angles between the links and the horizontal axis are presented here. The

Monte Carlo simulation results are averaged over 10,000 samples. From Fig. 3, it is

observed that the analytical results match the simulation results closely. The links with

angle φ = 0 or π/2 intersect the smallest number of interior walls on average. The reason

is the links with angle φ = 0 or π/2 are only blocked by the horizontal or vertical walls

at this time, where the density of walls is only half of λ.

Fig. 4 presents a comparison of coverage probability between analytical results and

Monte Carlo simulation results, under impenetrable wall blockages. The analytical re-

sults are obtained from Theorem 3 in Section 3.3. The parameter T denotes the SIR

threshold. The values of the main parameters are summarised in Table I. From Fig. 4,

we can observe that the curves of analytical results match the Monte Carlo simulation
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Figure 3: The validation of average wall number intersected by links. We simulate a

square area of 40 × 40 m2. The wall density is assumed as λ = 0.05 m−2. The average

wall length takes E[L] = 3, 5, 7 m respectively. The link length is assumed as 20 m for

both the analysis and simulation. The position of typical UE is located at the centre of

the scenario as shown in Fig. 2. The position of the server base station is located at the

circle with the centre of UE’s position and the radius of link length.

Table 1: Simulation parameters

Pathloss exponent α = 2

SC BS transmit power P = 1W

Wall penetration loss ω = 10dB

Number of samples per simulation 104

results closely with only a small gap between them. The small gap is caused by the corre-

lations of wall blockage effects on different links, which are captured in the Monte Carlo

simulation but ignored in the analytical result in Theorem 3. Additionally, in stochas-

tic geometry, the average coverage probability is derived by aggregating the SIR over

the infinite 2-D plane. However, the considered indoor scenario is of a finite area. We

adjust the integral limits in equation (13) according to the specific indoor scenario size,

which contributes to the difference between the analytical coverage probability and the

simulation result. The reasonably good accuracy of the analytical coverage probability

expression in Theorem 3 (as compared with the Monte Carlo simulation result) indicates

that Theorem 3 offers a good trade-off between performance evaluation (or prediction)

accuracy and the computational complexity. The Monte Carlo simulation took several
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Figure 4: The verification of the coverage probability expression in (11) by comparing it

with Monte Carlo simulation results. Assume the indoor scenario as a square of 40×40 m2.

Given the distribution of SC base stations with a density β = 0.01 m−2, the values of wall

density are taken as λ = 0.01, 0.4 m−2, and average wall length are taken as E[L] = 3, 5 m,

respectively. The typical UE is located at the center of the considered network scenario.
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Figure 5: The coverage probability obtained as a function of transmitter density in The-

orem 3 versus the SIR threshold for different values of SC base station density, given the

wall density λ = 0.05 m−2. The average wall length is E[L] = 3 m. The SC base station

density is µ0 = 0.01 m−2. The typical UE is located at the center of the considered indoor

network scenario.
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hours to complete all the calculations for 10,000 samples.

Fig. 5 presents the coverage probability calculated using equation (11) in Theorem

3 versus the SIR threshold for different values of SC base station density. An apparent

observation is that the coverage probability does not always benefit from the increasing

density of SC base stations, given the distribution of wall blockages in an indoor envi-

ronment. In other words, for indoor dense cellular networks with interior wall blockages,

there is a finite optimum density of SC base stations that maximizes the coverage prob-

ability. This is because increasing the density of SC base stations will also increase the

number and density of interfering links, making the coverage probability limited by the

interference. In addition, the coverage is very poor when the SC base station density is

relatively low compared to the wall blockage density. This is because the typical UE can

hardly find any LOS SC base station to connect to when the wall blockage density is much

larger than that of SC base station density.

5 Conclusion

In this deliverable, we have investigated the interior wall blockages and the associated

analysis of interference effects and coverage performance of indoor dense SC networks.

The wall blockage model is developed on the basis of the stochastic geometry. The key

idea is that the interior walls are stochastically modelled as straight lines. Then the

effects of interior wall blockages on signal transmissions are investigated for indoor dense

SC networks. An analytical expression of the coverage probability is derived for the

case of impenetrable interior wall blockages. The analytical results are validated through

comparisons with Monte Carlo simulation results. The numerical and simulation results

show that the coverage probability of an indoor dense SC network is sensitive to dense

interior wall blockages. Although the coverage probability can benefit from the increasing

density of indoor SC base stations, there exists a finite optimum density of SC base

stations that maximizes the network coverage probability given the distribution of interior

walls. By combining the results in this deliverable with the indoor 3D MIMO channel

modelling and 3D MIMO array antenna design results obtained in Work Package 1 &

2, Work Package 3 will consider the correlation of blockage effects in the modelling and

analysis of indoor 3D MIMO small cell networks. Since in an finite indoor environment,

the correlation of blockage effects between 3D MIMO links will be considerable. Moreover,

the interior wall blockage model will be extended by considering the effects of reflection

in indoor dense SC networks in conjunction with 3D MIMO array antennas.
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