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Quantum monodromy has a strong impact on the ro-vibrational energy levels of chain molecules

whose bending potential energy function has the form of the bottom of a champagne bottle

(i.e. with a hump or punt) around the linear configuration. NCNCS, cyanogen iso-thiocyanate,

is a particularly good example of such a molecule and clearly exhibits a distinctive

monodromy-induced dislocation of the energy level pattern at the bending-rotation energy at

the top of the potential energy hump. Indeed, NCNCS [B. P. Winnewisser et al., Phys. Rev. Lett.

2005, 95, 243002] and the water molecule [N. F. Zobov et al., Chem. Phys. Lett. 2005, 414,

193–197] were the first two molecules for which experimental confirmation of quantum

monodromy was obtained. We used the fast scan sub-millimetre spectroscopic technique

(FASSST) to extend the measurements and spectral analysis to pure rotational transitions

(end-over-end) in bending vibrational states lying well above the monodromy point. The analysis

of 9204 lines assigned to 7 vibrational states, presented here, shows that the topological properties

of the bending potential function are mapped onto every aspect of the ro-vibrational energy levels

involving excitation of the quasi-linear bending vibration. In order to model the large amplitude

dynamics of such a molecular system, and also to achieve some insight beyond satisfactory

parameters for reproducing the spectrum, we used the generalized semi-rigid bender (GSRB)

Hamiltonian, which is described in some detail. This Hamiltonian provides a good description of

the energy levels over the seven bending states observed, coming close to experimental accuracy.

Due to high J values of the measured rotational transitions (J r 116), the least squares fitting

procedure was applied not directly to the measured frequencies, but to effective constants derived

from fitting the transition frequencies to a set of polynomials in J(J + 1) yielding effective Beff

and Deff constants. The GSRB wave functions are used to show that the expectation values

of any quantity which varies with the large amplitude bending coordinate will also have

monodromy-induced dislocations. This includes the electric dipole moment components. High

level ab initio calculations not only provided the molecular equilibrium structure of NCNCS, but

also the electric dipole moment components ma and mb as functions of the large-amplitude bending

coordinate. Calculated expectation values of these quantities for individual ro-vibrational levels

show the now recognizable monodromy pattern. Finally, a generalization of the quasi-linear

parameter g0 is suggested.

1. Introduction

In two previous papers,1,2 we have used pure rotational

(end-over-end) transitions to show that NCNCS exhibits a

pattern of rotation-bending energy levels characteristic of

non-trivial monodromy: an abrupt transition, softened

somewhat by quantum mechanics, from the pattern typical

of a bent molecule to that expected for a linear molecule as the

vibrational excitation passes above the top of the barrier to

linearity. At first glance this appears surprising. However, the

determination of the potential energy function and vibrational

spacings from purely rotational transitions has already been

accomplished for a variety of molecules using the semi-rigid

bender approach. In the present paper, we present a

comprehensive analysis of the data behind the conclusions

discussed in the two previous papers, with an extension of the

assigned and fitted data to one higher excited bending

state. The highly characteristic effects of monodromy on the

end-over-end rotational energy levels are shown in detail.

The present paper is dedicated to Herb Pickett and Ed

Cohen, who respectively wrote and cultivated the JPL

program package3 widely used for the analysis of rotational

spectra. The analysis of the NCNCS spectrum is appropriate

for this purpose, because the main units of SPFIT and SPCAT
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became indispensable integrated units in the program package

CAAARS (Computer Aided Assignment of Asymmetric

Rotor Spectra)4 written in this laboratory. The first sight of

the dense spectrum of NCNCS was one of the motivations to

develop CAAARS. The basic organization of SPFIT and

SPCAT—separate files for lines, parameters and log of run

in fitting (SPFIT), separate list of predictions and log of

run from catalog calculation (SPCAT)—made them ideal for

repeated, iterative launching from the assignment procedure.

Actually, NCNCS was a challenge for these programs, because

neither the linear nor the asymmetric molecule Hamiltonians

can be used to properly label or even to calculate the energy

levels with anything close to experimental accuracy.

In 1980 King and Kroto5 reported the observation of a new

microwave spectrum during flow thermolysis experiments

involving sulfur dicyanide, S(CN)2. What they had found

was the isomerization product cyanogen isothiocyanate,

NCNCS. This molecule is a wing-shaped species with two

essentially straight entities attached to the central nitrogen

atom as shown in Fig. 1.

In the preface to the Dover Edition of his book, Harry

Kroto6 wrote: The gradual change from asymmetric rotor

to pseudo-linear molecule, which takes place as the bending

vibrational quantum number increases, is beautifully depicted

in the vibrational satellite structure of the J = 12 ’ 11

rotational transition. This statement was even more true

than he realized at that time. In Fig. 2 we present the original

Figure with some modifications. The assignment comb for

vb = 0, the ground vibrational state of NCNCS, exhibits

a pattern characteristic of a slightly asymmetric prolate

rotor. With increasing excitation of the large amplitude

bending motion at the central nitrogen this pattern

‘‘metamorphoses to that of a pseudo-linear molecule’’, using

a phrase of Harry Kroto. This observation referred primarily

to the relative positions of the Ka = 0 line and the Ka = 1

doublet lines.

Fig. 1 Ab initio predicted equilibrium structure of NCNCS in the

principal axis system of the inertia tensor. The large-amplitude

coordinate r is the complement of the CNC bond angle.

Fig. 2 The J= 12’ 11 rotational transition of NCNCS, based on the Figure on page 22 in ref. 6 and shown with the assignments extended. The

Ka numbers are indicated for every vb. The microwave survey spectrum was run with 2000 V cm�1 electric field strength, accentuating lines with

high Ka; lines with Ka = 1 and 0 appear weak.7 The original four sets of transitions for vb = 0 to vb = 3 were assigned by King et al.7 The extension

to vb = 4, 5 and 6 is part of this work. The color scheme throughout this paper is: properties arising from bending vibrational states for which

Ka = 0 lies below the barrier (monodromy point) are drawn in blue. The state closest to the monodromy point is indicated in red, while all states

for which the energy of the Ka = 0 level is well above the monodromy point are shown in green.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 8158–8189 | 8159



The bending potential function derived from the first

analysis of the microwave data by King et al.7 yielded the

height of the barrier to linearity as 270 cm�1, which implies

that we should be able to probe ro-vibrational energy states

both below and above the hump. This type of potential

function is shown in Fig. 3.

King, Kroto and Landsberg7 did not assign lines for any

vibrational state above the barrier. They probably could not,

because they were not aware of the dramatic changes still to be

observed in the spectrum. Most prominent is the abrupt

reversal of the sequence of frequency positions of the

Ka = 0 lines for vb = 4, 5 and 6 as shown now in our

Fig. 2. A reversal is indeed predicted for NCNCS in ref. 8, but

the patterns in the spectrum were not modeled for higher

excitation at that time, and the relevant mathematics had not

even been formulated.

Like all of their contemporary spectroscopists they were not

aware that a mathematical concept new to spectroscopy was

hidden in the vibrational satellite structure of NCNCS. The

concept of monodromy (Greek for ‘‘once around’’) in a

champagne bottle potential was only introduced in 1991 by

the mathematician Larry Bates.9

Since the two-dimensional NC–NQCS bending potential

function is circularly symmetric, we have two conserved

physical quantities, energy and angular momentum.1 In

quantum mechanics these quantities correspond to the

commuting operators of energy and angular momentum, with

their respective observables. At the energy of the top of the

hump, called the monodromy point, the topology of the

potential energy surface bifurcates according to Bates9 into

two distinct spaces (see Fig. 3) with surface topology S2 � S1

below and S3 above the monodromy point.2 This sudden

change in topology causes an associated torus bundle in phase

space to exhibit nontrivial monodromy, which means there

does not exist a complete set of globally well-defined action

variables.2 This set would consist of total energy, vibrational

energy, and rotational (about the Figure axis) energy. In

quantum mechanics, classical monodromy translates into a

dislocation in the pattern of discrete energy levels around the

monodromy point2 in the energy-momentum map. That this

mathematics was relevant to molecular spectroscopy was

grasped by Mark Child, who developed its application to

triatomic molecules, and especially to the case of H2O.10–14

The change in topology involves the reclassification of one

degree of freedom from rotational (below the barrier) to

vibrational (above the barrier),15–17 a transition which is

considerably more abrupt than was thought earlier.

For two chain-type molecules, cyanogen iso-thiocyanate,

NCNCS,1 and water, HOH,18 the experimental data so far

available cover regions both below and above the monodromy

point and thus constitute the first experimental evidence

of quantum monodromy for molecular systems having a

champagne bottle potential function. Similar effects were

observed earlier by one of us19 in the microwave spectra of

quasi-symmetric top molecules. In particular, in the spectrum

of methyl iso-thiocyanate, CH3NCS,20 rotational transitions

were observed arising from molecules in the vibrational CNC

bending states both below and above the monodromy point.

The characteristic patterns exhibited in the microwave spectra

of quasi-symmetric top molecules were discussed in terms of

the potential energy function governing two large-amplitude

motions, the skeletal bending and the internal rotation of the

CH3-group.
19

For an overview on the subject of monodromy and molecular

spectroscopy the reader is referred to recent publications.2,14,21

From an historical point of view it is interesting to note that

Riemann formulated the concept of monodromy in his work

on functions of complex variables and on complex linear

differential equations having given singularities and corres-

ponding monodromy transformations.22 In his lecture at the

1900 International Congress of Mathematicians in Paris,

David Hilbert23,24 included the monodromy-related Riemann

problem as Number 21 in his famous list of unsolved problems

for twentieth century mathematics.

In the present work a discussion of our NCNCS measure-

ments and their analysis is presented, highlighting the pervasive

patterns imposed on all aspects of the spectrum by quantum

monodromy. The data pertains to vibrational states in which

only the large amplitude bending motion is excited. It should be

noted that if the molecule were bent, with no large amplitude

bending, the lowest bending mode ‘‘would be n9’’, whereas for a
linear molecule, in which the three bending modes are degenerate,

it ‘‘would be n7’’. We therefore use the notation vb, indicating

the one-dimensional or radial vibrational quantum number

which is required by both the bent asymmetric rotor and

the Generalized Semi-Rigid Bender (GSRB) models. For

simplicity, it will be referred to throughout as vb:

vb = (vlinear � |l|)/2 or vlinear = 2vb + |Ka|, (1)

or, in the theoretical section as v � vb. The vibrational

quantum number used in a linear model, vlinear, relevant for

high vb, can be inferred from eqn (1). The vibrational angular

Fig. 3 The volume defined by the champagne bottle potential

function for the quasi-linear two-dimensional bending mode of

NCNCS bifurcates into two spaces, with the indicated topologies in

blue and green, at the critical point or monodromy point marked in

red, which is the top of the potential hump and the origin of the

coordinate system.
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momentum quantum number l of a linear molecule is identical

to k for a symmetric top, which is used here in section 2, while

the same quantity is indicated by Ka in discussing the

experimental results and the GSRB calculations, since the

asymmetric top perspective is necessary in the analysis for

the case of non-zero end-over-end rotation.

The remainder of the paper is organized as follows: In

section 2 we discuss theoretical considerations: the ab initio

calculations (2.1) and a description of the GSRB Hamiltonian

along with the incorporation of the centrifugal distortion

terms (2.2). Section 3 deals with experimental aspects.

Section 4 encompasses the data reduction and assignment

procedures. Section 5 continues with the data analysis.

Sub-section 5.1 provides the determination of effective

spectroscopic constants. The resonance interactions

observed in the NCNCS spectrum are briefly discussed in

Sub-section 5.2 while the GSRB evaluation of the NCNCS

results is discussed in Sub-section 5.3 together with the

centrifugal distortion contributions. Sub-section 5.4 discusses

the effect of monodromy on expectation values of the electric

dipole moments and indeed of any physical quantity which

depends on the large amplitude bending coordinate r, while
Sub-section 5.5 clarifies and extends the definition of the quasi-

linear parameter. Section 6 presents the conclusions to be

drawn from this work.

2. Theoretical considerations

2.1 Ab initio calculations, structure, theoretical potential

energy function and dipole moments la and lb for NCNCS

The molecular structure of NCNCS was calculated using the

coupled-cluster method including single and double excita-

tions and a perturbational correction due to connected

triple excitations, CCSD(T)25,26 The one-particle basis sets

employed were the correlation-consistent polarized valence

basis sets of quadruple- and quintuple-zeta quality, cc-pVQZ

and cc-pV5Z.27 For sulfur, the extended correlation-consistent

cc-pV(n + d)Z basis sets were used.28 In the valence correla-

tion treatment, the 1s-like core orbitals of the carbon and

nitrogen atoms and the 1s2sp-like core orbitals of the sulfur

atom were excluded from the active space. The core-electron

correlation effects were investigated using the correlation-

consistent polarized core-valence basis set of quadruple-zeta

quality, cc-pCVQZ.29 The calculations were performed using

the MOLPRO-2006 package of ab initio programs.30

The molecular structure computed for the electronic ground

state of NCNCS is given in Table 1. The equilibrium structure

of the NCNCS molecule was found to be planar and bent,

with the trans conformation of both NCNC and CNCS

moieties (a W-shaped overall structure). Values of the

structural parameters obtained in the valence correlation

treatment with the largest basis set, cc-pV5Z, were corrected

for the core-electron correlation effects determined at the

CCSD(T)/cc-pCVQZ level. The best estimates of the equili-

brium parameters of NCNCS obtained in this way are given in

the last column of Table 1. Considering convergence of the

calculated values with the basis set size and errors inherent to

the CCSD(T) method, the predicted equilibrium internuclear

distances and bond angles are believed to be accurate to about

�0.001 Å and �0.11, respectively. The large change in the

CNC angle from the cc-pCVQZ to the cc-pCV5Z basis set

shows the importance of the larger basis set for this quasi-

linear bending coordinate. Fig. 1 shows this ab initio equilibrium

structure, which differs slightly from that given in ref. 1. The

CNC bond angle 1431 already suggests that the molecule is

flexible or quasilinear, with a low energy bending vibration.

The CNC bending potential energy function was deter-

mined by optimizing the structural parameters for various

assumed values of the valence angle CNC. All of the structural

parameters were found to vary significantly with the CNC

angle. In particular, for the CNC moiety, the CN and NC

internuclear distances increase nonlinearly with decreasing

CNC angle. The differences in the CN and NC internuclear

distances amount to 0.052 and 0.042 Å, respectively, when the

CNC angle ranges from 1801 to 1201.

The CNC bending potential energy function of NCNCS can

be characterized by three parameters, namely the equilibrium

angle re, the height of a barrier to linearity H, and the

harmonic force constant f (at r = re). The best ab initio

estimates of these parameters obtained in this work are re =
37.01, H = 285 cm�1, and f = 0.109 mdyn Å.

Table 2 gives the ab initio bending potential energy and the

electric dipole moments along the minimum energy path.

These were calculated by the finite-field approach at the

CCSD(T)/cc-pVQZ level of theory.

Table 1 Molecular parameters of NCNCS determined at the
CCSD(T)/cc-pVnZ level of theory

cc-pVQZ cc-pV5Z CCa Equ.b

Equilibrium configuration r a 0
rN1C1

/Å 1.1643 1.1635 �0.0023 1.161
rC1N2

/Å 1.3181 1.3182 �0.0037 1.314
rN2C2

/Å 1.2128 1.2130 �0.0033 1.210
rC2S

/Å 1.5556 1.5540 �0.0033 1.551
+(NCN)/1 176.33 176.37 +0.13 176.5
+(CNC)/1 142.32 141.76 +1.23 143.0
+(NCS)/1 174.33 174.34 +0.21 174.6
Energy/hartree +583 �0.166197 �0.187546

Linear configuration r = 0
rN1C1

/Å 1.1665 1.1658 �0.0025
rC1N2

/Å 1.2965 1.2961 �0.0022
rN2C2

/Å 1.1945 1.1942 �0.0021
rC2S

/Å 1.5636 1.5621 �0.0037
DE/hc/cm�1 c 306 330 �45 285

a Corrections for the core-electron correlation effects determined

at the CCSD(T)/cc-pCVQZ level. b Estimated equilibrium values.
c Energy difference between the linear and equilibrium configurations.

Table 2 The ab initio CNC bending potential energy function and
electric dipole moment components ma and mb for NCNCS

r/deg V(r)/cm�1 ma/D mb/D

0.0 0.0 2.714 0.000
10.0 �40.0 2.761 0.058
20.0 �141.5 2.895 0.134
30.0 �251.2 3.094 0.292
37.68 �284.5 3.197 0.414
40.0 �276.2 3.320 0.559
50.0 �83.4 3.507 0.929
60.0 494.3 3.580 1.364
70.0 1644.0 3.478 1.814
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2.2 Description of the generalized Semi-Rigid Bender

Hamiltonian

The robust properties of the bifurcation of the champagne

bottle potential function into two distinct topological spaces

(see Fig. 3) at the monodromy point are mapped onto the

energy-momentum maps for ro-vibrational energy, and thus

onto the experimental spectrum of any quasi-linear molecule.

The spectrum allows us to determine physical quantities such

as coordinate expectation values, ro-vibrational wave func-

tions, dipole moments etc. which depend on the motion of the

NCNCS molecule under the influence of the champagne bottle

potential associated with the large amplitude bending mode.

For the present analysis of the NCNCS spectrum the

Semi-Rigid-Bender (SRB) concept was used since it can handle

five-atom chain molecules with relative ease, in contrast to more

advanced methods such as variational calculations. The level of

approximation offered by SRB calculations reproduces all of

the physically significant features of the NCNCS spectrum,

even if experimental accuracy cannot quite be achieved. We

therefore believe that a brief but thorough discussion of the

Generalized Semi-Rigid Bender (GSRB) Hamiltonian as

applied to NCNCS should be presented. This is especially true

as the initial derivation31–34 presents the SRB as a simplification

of the very much more complicated non-rigid bender. Here we

present a derivation which proceeds directly to the SRB.

The usual starting point for studying vibration and rotation

in molecules is to introduce normal coordinates for the vibra-

tions. Typically these are initially treated in the harmonic

approximation with a rigid-rotor model used for the rotational

motion. This initial description can then be improved by

considering higher order terms and interactions. However, in

the case of large-amplitude vibrational motion this starting

point can be quite inappropriate. This is because large-ampli-

tude vibrations are rarely in the direction of the rectilinear

displacements inherent in normal coordinates and because the

large-amplitude vibrational motion can also have a rotational

nature, especially in the case of bending or torsional motion.

In a 1970 paper on the rotation and large-amplitude

bending vibration of a triatomic molecule, Hougen, Bunker,

and Johns31 introduced what has come to be known as the

HBJ approach. This approach separates the large-amplitude

vibration from the other vibrations, instead uniting it with the

rotational motion, while the other vibrations are assumed to

be of small amplitude. That is, HBJ separates the Hamiltonian

into a small-amplitude vibrational part and a rotation +

large-amplitude vibrational part. The seminal contribution

of HBJ, and the idea which makes this separation possible

and enormously efficacious, is the introduction of a flexible

reference configuration. The reference configuration is defined

so as to follow the large-amplitude motion. For example, in

the case of a large-amplitude bending vibration the reference

configuration bends with the molecule. In this way the

reference configuration carries the large-amplitude bending

motion of the molecule in the Hamiltonian. The Greek letter

r is traditionally used to denote the coordinate describing the

large-amplitude motion of the reference configuration.

In the HBJ approach the small-amplitude vibrations are not

defined in terms of the instantaneous displacements of nuclei

away from the equilibrium configuration (already problematic

in the case of a molecule with multiple accessible equilibria).

Instead they are defined in terms of the instantaneous

displacements of the nuclei from the reference configuration,

thereby decreasing the magnitude of these displacements.

Bunker and Stone33 showed how to fully incorporate

rotational motion into the HBJ treatment, thus creating the

rotating Rigid Bender model. Subsequent work by Hoy and

Bunker34 incorporated the small-amplitude vibrations by Van

Vleck perturbation theory, giving the Non-Rigid Bender

model. Bunker and Landsberg,32 inspired by the suggestion

of John Hardwick, took a different approach, and allowed the

reference configuration itself to ‘‘relax’’ (see below) during the

large amplitude vibration. The resulting model, less complete

than the Non-Rigid Bender model, but easier to calculate, is

known as the Semi-Rigid Bender (SRB). The SRB does not

explicitly account for the small amplitude vibrations or

centrifugal distortion involving the small-amplitude vibra-

tions. (Note, however, that the small amplitude vibrations

can be included in a rough-and-ready way by having the

geometry of the reference configuration and the potential

energy function depend on the small amplitude vibrational

quantum numbers, thus defining an effective SRB

Hamiltonian for each excited small amplitude state.) The hope

expressed in ref. 32 in developing the SRB was to produce a

model which, although not as accurate as the non-rigid

bender, could be more easily generalized to larger molecules.

This hope has certainly been realized. Nothing in the SRB

model restricts it to a bending motion, and indeed it has been

used for a variety of different large-amplitude vibrational

motions. It is also straightforward, in principle, to extend

the HBJ Hamiltonian to more than one large-amplitude

vibration. It is not so straightforward, however, to develop

the multidimensional large-amplitude vibrational basis

functions for that case.

Unlike the more general non-rigid-bender model, the SRB

does not consider any displacements of the nuclei away from

the reference configuration. Thus, the SRB model can be

considered as a stick-figure quantum model, which describes

the rotation and large-amplitude vibration of a molecular

framework as shown in Fig. 1. The coordinate r describes

the single large-amplitude motion of the framework. Other

features of the framework such as internuclear distances and

angles are allowed to ‘‘relax’’ (i.e. vary) as functions of r. It is
this feature that leads to the moniker semi-rigid bender. Since

small-amplitude vibrational displacements are neglected in the

SRB the reference configuration is identical to the instanta-

neous configuration and therefore Eckart-type and Sayvetz

conditions are not needed since those explicitly involve the

small-amplitude vibrational displacements.35

In the present work we use the SRB model, in a form

generalized to larger molecules and for an arbitrary but single

large-amplitude motion. This form of the SRB has been called

the Generalized SRB (GSRB). The actual computational steps

performed to solve the SRB Schrödinger equation are outlined

in several places (for example in section IV of ref. 36) and will

not be repeated in detail here. The derivation of the SRB

Hamiltonian for large-amplitude bending of a triatomic

molecule can be seen by following through the derivations in
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ref. 31–33. However, a somewhat more direct derivation can

be presented by taking advantage of the fact that we neglect

the small-amplitude vibrations from the outset. This we do

here, for the case of a general single large-amplitude vibration

in an arbitrary molecule.

The SRB Hamiltonian is derived from the classical

Hamiltonian for a vibrating, rotating point mass stick-figure

molecule such as that illustrated in Fig. 1. The potential energy

in the SRB Hamiltonian is simply a function of the large-

amplitude coordinate, V(r). We begin in the space-fixed

non-rotating center-of-mass frame X,Y,Z. The location of

nucleus a in this frame can be written as the vector ra(r), for
NCNCS a = 1, 2, 3, 4, 5. To solve the Schrödinger equation

we work in the center-of-mass molecule-fixed axes frame,

shown for NCNCS in Fig. 4. The positions of the nuclei in

the molecule-fixed (i.e. rotating) frame x, y, z, are given by the

vectors aa(r), which depend explicitly on r. Following Bunker

and Jensen37 [eqn (10.5) to (10.7)] we define the direction-

cosine matrix C as that which rotates space-fixed vector

components into molecule-fixed components. The inverse

(equal to the transpose, denoted by t) of C then rotates in

the opposite direction. Thus, if ra and aa are considered as

column vectors, the center-of-mass frame space-fixed location

of nucleus a is simply ra(r) = Ct aa(r). The classical kinetic

energy for the SRB model is simply evaluated as,

T ¼ 1

2

X
a

mav
2
a ¼

1

2

X
a

ma _r2a ¼
1

2

X
a

ma _rta _ra

¼ 1

2

X
a

ma
d

dt
ðCtaaÞ

� �t
d

dt
ðCtaaÞ

� �

¼ 1

2

X
a

maa
t
a

_C _Ctaa

þ 1

2

X
a

ma½ata _CCtaa þ _ataC
_Ctaa�

þ 1

2

X
a

ma _ataCC
t _aa;

ð2Þ

where ma is the mass of nucleus a and where we remember that

in the SRB model the small-amplitude displacements from the

reference configuration are neglected (i.e. fixed to 0). Standard

but careful evaluation shows that the elements of the rotation

matrix product factors in eqn (2) can be written,

½ _C _Ct�i;j ¼ di;jx2 � oioj ;

½ _CCt�i;j ¼ �½C _Ct�i;j ¼
X
k

ei;j;kok;

½CCt�i;j ¼ di;j ;

ð3Þ

where di,j is the Kronecker delta and ei,j,k is the Levi–Civita

tensor. x is the angular velocity vector of the rotating SRB

molecular framework relative to the laboratory-fixed axes.

The components oi of x are the projections of the vector x

onto the SRB molecule-fixed axes x, y, z. We know that the

elements of the moment of inertia tensor are

Ii;jðrÞ ¼ Ij;iðrÞ ¼
X
a

maðdi;ja2a � aa;iaa;jÞ; ð4Þ

for i, j = x, y, z, where aa,i is the ith component of aa(r).
Eqn (3) and (4) allow one to re-express each of the three terms

in the last line of eqn (2) to give the simple form for the SRB

kinetic energy operator,

T ¼ 1

2
xtIxþ x �

X
a

maðaa � _aaÞ þ
1

2

X
a

mað _aaÞ2

¼ Trotation þ TCoriolis þ TLAvib:

ð5Þ

Here I is the standard moment of inertia tensor for the

reference configuration and which therefore depends on r,
and where we remember from Fig. 4 that the aa(r) are the

locations of the atoms in the SRB molecule-fixed axes system.

Other than minor differences in notation eqn (5) is equivalent

to eqn (7) and (8) of section 11-1 of Wilson, Decius, and

Cross38 for a single vibration, noting that those authors do not

include the customary minus sign in their definitions of the off-

diagonal elements of the moment of inertia tensor. We can

now take account of the fact that the time dependence of the

aa(r) is implicit in this notation, being only through their

dependence on r. Thus,

_aa ¼
daa

dt
¼ daa

dr
_r; ð6Þ

and we obtain

TCoriolis ¼ ð _rxÞ �
X
a

ma aa �
daa

dr

� �" #
: ð7Þ

Hougen, Bunker and Johns31 realized that this term can be

incorporated into an extended version of Trotation from eqn (5)

by extending the moment of inertia to a fourth dimension

relating to the large-amplitude coordinate. First, a fourth

angular velocity component is introduced,

or = _r. (8)

Then by defining the following three pairs of new off-diagonal

elements of the moment of inertia tensor,

Ii;rðrÞ ¼ Ir;iðrÞ ¼
X
a

ma aa �
daa

dr

� �
i

; ð9Þ

Fig. 4 SRB molecule-fixed-axes x,y,z for NCNCS. The origin of the

x, y, z coordinate system is at the center of mass. The y coordinate is

perpendicular to the x, z plane and is not drawn. The positions of the

nuclei in the molecule-fixed frame are given by the vectors aa, where

a = 1, 2, 3, 4, 5. These vectors depend on the large amplitude

coordinate r.
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for i = x, y, z, eqn (7) can be written as

TCoriolis ¼ _r
X
i

oi

X
a

ma aa �
daa

dr

� �
i

" #

¼
X
i

oiIi;ror

¼ 1

2

X
i

ðoiIi;ror þ orIr;ioiÞ:

ð10Þ

Similarly, by defining

Ir;rðrÞ ¼
X
a

ma
daa

dr

� �2

; ð11Þ

and again using eqn (6) and (8), we can re-express the kinetic

energy of the large amplitude vibration TLAvib,

TLAvib ¼
1

2

X
a

mað _aaÞ2 ¼
1

2

X
a

ma
daa

dr
_r

� �2

¼ 1

2

X
a

ma
daa

dr

� �2

o2
r

¼ 1

2
orIr;ror:

ð12Þ

Still following HBJ the symmetric extended 4 � 4 matrix ~I and

the 4-vector ~x can be defined as,

~IðrÞ ¼

~Ix;x ~Ix;y ~Ix;z ~Ix;r
~Iy;x ~Iy;y ~Iy;z ~Iy;r
~Iz;x ~Iz;y ~Iz;z ~Iz;r
~Ir;x ~Ir;y ~Ir;z ~Ir;r

2
6664

3
7775; ~x ¼

~ox

~oy

~oz

~or

2
6664

3
7775; ð13Þ

where the elements of ~I are taken from eqn (4), (9) and (11)

and those of ~x are simply ox, oy, oz, and from eqn (8), or.

Using eqn (10) and (12) in eqn (5) then gives the final and very

pleasing form for the classical kinetic energy and thus the

Hamiltonian for a rotating nuclear framework undergoing a

single large-amplitude vibration,

T = 1
2

~xt~I ~x, (14)

so,

H = T + V(r) = 1
2
~xt~I ~x + V(r). (15)

In this expression the large-amplitude vibration is treated

equivalently with the rotational motion.

The next step is to convert the Hamiltonian of eqn (15) to a

form involving momenta rather than angular velocities. The

classical generalized momenta conjugate to the components of

~x are,

pr ¼
@T

@or
; r ¼ x; y; z; r: ð16Þ

The first three of these are easily shown to be the molecule-

fixed components of the total angular momentum,

pi = Ji, i = x, y, z (17)

(see eqn (1)–(3) of ref. 38). The fourth component Jr is simply

defined as,

Jr ¼ pr ¼
@T

@or

¼ ~Ix;r ~ox þ ~Iy;r ~oy þ ~Iz;r ~oz þ ~Ir;r ~or:

ð18Þ

Defining the four-vector J̃ as the column vector [J̃x, J̃y, J̃z, J̃r]
t

[where these elements of J̃ are simply Jx, Jy, Jz, and Jr from

eqn (18)] we can write,

J̃ = ~I ~x, or ~x = ~I�1J̃ = ~lJ̃, where ~l(r) = ~I�1(r), (19)

(as long as ~I is not singular). Eqn (15) can now be written in

terms of momenta as,

H = T + V(r) = 1
2
J̃t~lJ̃+ V(r). (20)

Boris Podolsky39 pointed out that writing the classical

Hamiltonian in a particular form allows one to immediately

interpret the same form as the quantum mechanical Hamiltonian,

provided that each classical momentum pi is now interpreted

as the quantum mechanical operator �i�h(q/qqi), where pi is the
momentum conjugate to the generalized coordinate qi. Some-

times known as the Podolsky Trick, this process represents the

transformation of the Laplacian operator from Cartesian

coordinates to the generalized coordinates being used, avoid-

ing the need to explicitly perform the transformation of the

differential operators. Taking into account normalisation,

the ‘‘Podolsky’’ form of the Hamiltonian becomes (see for

example eqn (9.30) of Bunker and Jensen37),

H ¼ 1

2
s�1=2g1=4

X
i;j

pig
�1=2gi;jpj

" #
g1=4s1=2 þ VðrÞ: ð21Þ

Here g is the determinant of the matrix gi,j and s is the volume

element weight factor to be used in the integration of the wave

functions for normalisation or other purposes (for example, in

spherical coordinates, the volume element is typically chosen

as r2sinydrdydj in which case s= r2siny). The SRB approach

uses the volume element dr(siny) dydjdw of HBJ, where y, j,
w are the Euler angles for the orientation of the molecule-fixed

axes relative to the space-fixed axes, so that s = siny.
The Podolsky form of the classical Hamiltonian in eqn (21)

is the one that can immediately be re-interpreted as

the quantum Hamiltonian, provided that the classical

momenta appearing there are those conjugate to the

coordinates (y, j, w, r, in our case) and that when eqn (21)

is then re-interpreted as the quantum form the momenta

are the differential operators related to the coordinates

�i�h @
@y

� �
;�i�h @

@j

� 	
;�i�h @

@w

� 	
;�i�h @

@r

� 	
; in our case

h i
. However,

in eqn (20) the classical SRB Hamiltonian is expressed in

terms of the classical angular momenta J̃x, J̃y, J̃z, and J̃r which

are related to the angular velocities ~ox, ~oy, ~oz, and ~or, rather

than to the coordinates. Except for J̃r, these angular momenta

are not conjugate to the coordinates. Therefore, to use

eqn (21) as the bridge between classical and quantum

mechanics, the classical SRB Hamiltonian of eqn (20) must

first be re-expressed in terms of momenta conjugate to

the coordinates. Similarly, we would like the quantum
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Hamiltonian to be in terms of the quantum angular

momentum operators, rather than the operators �i�h @
@y

� �
, etc.

This means that the resulting quantum SRB Hamiltonian

must in turn be re-expressed to obtain the desired form. Doing

this while also accounting for the factor s = sin y is a very

involved process which, except for the appearance of the

r-related angular momentum, is part of the standard

development of the molecular vibration–rotation Hamiltonian.

We skip this part of the derivation as it can be done following

the standard treatment which can be found in various places,

in particular the nice review by Meyer.40

Quite surprisingly, the quantum SRB Hamiltonian obtained

by correctly accounting for the siny factor and doing the

conversions back and forth of the momenta is identical to

simply cancelling out the s factors in eqn (21) and interpreting

the momenta appearing therein as the quantum mechanical

angular momenta. That is, it turns out that the desired

quantum form of the SRB Hamiltonian in terms of angular

momentum operators is the same as eqn (21) with the s factors

removed and with the various g factors identified by direct

comparison with the SRB classical Hamiltonian of eqn (20).

Doing this identification, while requiring gi,j = gj,i, immediately

gives gi,j(r) = ~mi,j(r). Similarly, the determinant, g, in eqn (21)

becomes simply g = ~m, the determinant of the 4 � 4 ~li,j matrix.

The Podolsky form of the SRB Hamiltonian is now,

ĤSRB ¼
1

2
~m1=4

X
r;s

Ĵr~m�1=2~mr;sĴs

" #
~m1=4 þ VðrÞ ð22Þ

with r, s = x, y, z, r. Ĵi with i = x, y, z are the usual angular

momentum operator components Ĵx, Ĵy, Ĵz, and Ĵr = �i�h(q/qr).
(Note that HBJ31 does not explicitly refer to the SRB model.

However, the kinetic energy operator given in their eqn (28)

is that appropriate for the SRB if the small-amplitude

vibrational coordinates and angular momenta are fixed to

zero and if the full r-dependence of ~l is accounted for.)

The form of ĤSRB given in eqn (22) is somewhat awkward

because ~mr,s and ~m depend on r and therefore do not commute

with Ĵr. Eqn (35) of HBJ31 reformulates this expression by

carefully accounting for the commutation relationships to

obtain,

ĤSRB ¼
1

2

X
r;s

~mr;sĴrĴs þ
1

2

X
s

½Ĵr~mr;s�Ĵs

þ 1

2
~m1=4fĴr~mr;r~m�1=2½Ĵr~m1=4�g þ VðrÞ;

ð23Þ

with r, s = x, y, z, r. In this expression the Ĵr operators in

square or curly brackets only act within the brackets, e.g.

[Ĵr~m1/4] = �i�h(q~m1/4/qr). The last two terms before V(r)
are purely quantum mechanical terms arising from the

dependence of the elements of ~l on r.
The SRB Schrödinger equation is,

ĤSRBCSRB(r, y, j, w) = ECSRB(r, y, j, w). (24)

This equation is solved in the same manner as the Rigid

Bender,33 as also outlined in section IV A of ref. 36. First

the Hamiltonian operator is partitioned into two parts, a

large-amplitude vibration + z-axis rotation part, and the

remainder which includes all the terms involving rotation

about the x or y-axes,

ĤSRB ¼ ĤLAvibþz-rotation þ Ĥx�y-rotation;

ĤLAvibþz-rotation ¼
1

2
~mr;rĴ

2

r þ
1

2
½Ĵr~mr;r�Ĵr þ

1

2
~mz;zĴ

2

z

þ 1

2
~m1=4fĴr~mr;r~m�1=2½Ĵr~m1=4�g þ VðrÞ;

Ĥx�y�rotation ¼
1

2

X
i;jaz;z

~mi;j Ĵ i Ĵ j þ
X
i

~mi;rĴ iĴr

þ 1

2

X
i

½Ĵr~mr;i�Ĵ i; i; j ¼ x; y; z:

ð25Þ

The solution of the SRB Schrödinger eqn (24) is done in

two steps:

Step 1: A Large-Amplitude + z-rotation basis set is

obtained by solving the Schrödinger equation,

ĤLAvib+z-rotationCk,v(r, w) = Ek,vCk,v(r, w) (26)

for the product wave function,

Ck;vðr; wÞ ¼
1ffiffiffiffiffiffi
2p
p eikwck;vðrÞ; ð27Þ

where k is the quantum number associated with the rotation

about the z-axis while v corresponds to the LA-bending

quantum number. (Note: This corresponds to the definition

of v for a bent molecule, or the radial quantum number n when

described in polar coordinates for a linear molecule.) This

leads to a second order differential equation for ck,v(r). The
LA+ z-rotation part contains q/qr and q2/qr2 terms (through

Ĵr and Ĵr
2). However, in the HBJ approach the solution of the

r-dependent part of the Schrödinger equation relies on the

Numerov–Cooley technique (ref. 41 and 42 and references

therein) which requires that the differential equation only

contain a second order derivative. The first derivative term

in eqn (26) can be removed by the standard substitution,

ck;vðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~mr;rðrÞ
q jk;vðrÞ; ð28Þ

which leads to the equation for jk,v(r),

@2

@r2
jk;vðrÞ¼ f1ðrÞþk2f2ðrÞ�

2

�h2~mr;rðrÞ
½Ek;v�VðrÞ�

( )
jk;vðrÞ;

ð29Þ

where

f1ðrÞ ¼
~mðrÞ1=4

~mr;rðrÞ1=2
@2

@r2
~mr;rðrÞ1=2

~mðrÞ1=4

( )
;

f2ðrÞ ¼
~mz;zðrÞ
~mr;rðrÞ

:

ð30Þ

For each value of |k| eqn (29) can readily be solved by the

Numerov–Cooley technique to give the set of energies, Ek,v,

and functions, jk,v, for as many vibrational levels as needed.
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Eqn (28) followed by eqn (27) then yields the basis functions

Ck,v(r,w). If the molecule passes through the linear configura-

tion, as is the case for NCNCS, the ~l matrix becomes singular.

This can be handled by series solution in the region near the

singularities and using these solutions as starting values for the

Numerov–Cooley technique for regular regions.

Step 2: The product basis functionsCk,v(r, w) of eqn (27) are

multiplied by ‘‘end-over-end’’ rotational factors, that is by the

y, j parts, SJkm(y, j), of the normalized symmetric rotor wave

functions, to give the full SRB basis functions of eqn (14) of

Bunker and Stone,33

CJ,k,m,v(y, j, w, r) = Sj,k,m, (y, j)Ck,v(r, w) = |Jkmick,v(r),
(31)

where |Jkmi are normalized symmetric top wave functions and

where the ck,v(r) are independent of the sign of k since

eqn (29) depends on k2.

The second step in the solution of the SRB problem is, for

each J, to calculate the matrix representation of the SRB

Hamiltonian of eqn (25), hCJ,k0,m,v0|ĤSRB|CJ,k,m,vi, and to use

standard matrix techniques to calculate the SRB eigenvalues

and eigenvectors. ĤSRB is not only diagonal in m but

independent of m which can therefore be neglected. One slight

complication in calculating the matrix elements is that the

terms in the second summation of Ĥx�y-rotation in eqn (25)

require the derivatives of the ck,v(r) basis functions with

respect to r. These can easily and accurately be obtained using

the technique of Blatt.43

The evaluation of the matrix representation of the SRB

Hamiltonian of eqn (25), using the basis functions obtained

from the solution of eqn (29) [which itself requires the evalua-

tion of the f1 and f2 functions of eqn (30)] clearly requires the

evaluation of the elements of the extended inverse moment of

inertia matrix ~l, of the first and second derivatives with respect

to r of some of these terms and of the determinant of ~l, ~m.
However, eqn (9) and (11) show that elements of the ~I matrix

in row or column r involve (daa/dr). Thus the SRB

Hamiltonian can be written in terms of the aa and their first

through third derivatives with respect to r. To facilitate

the calculation of this Hamiltonian ref. 8 introduced the

‘‘axes-of-convenience’’: x0, y0, z0. This axis-set can be attached

to any convenient point of the molecule (or near the molecule)

and oriented as desired. For example in the case of the large-

amplitude CNC bending motion of NCNCS the axes-of-

convenience were chosen to be centered on the central nitrogen

nucleus and oriented along one of the NC bonds as shown in

Fig. 5(b). Relative to the axes-of-convenience we denote the

instantaneous position of each nucleus by a r-dependent
vector, ba(r) for a = 1, 2, 3. . ., N, where N is the number of

atoms in the molecule. We also introduce R(r) as the location
of the molecular center-of-mass in the x0, y0, z0 axis-system. It

is straightforward to specify the x0, y0, z0 components of the

ba(r) vectors in terms of the internuclear distances ri(r) and the

bond angles ai(r). (These physical parameters may be constant

or they may be functions of r.) As examples, for the

axes-of-convenience chosen for NCNCS, Fig. 5(b) shows that

b3(r) = 0 and b4(r) = rN2C2
(r)ẑ0, where the internuclear

distance may depend on r.

As seen in Fig. 5(a) the SRB molecule-fixed axes can be

rotated relative to the axes-of-convenience. This rotation can

depend on r. We introduce the matrix E(r) for this rotation,
so that the relationship between the SRB molecule fixed axes

position vectors, aa, and the axes-of convenience position

vectors, ba, is given by,

aa(r) = E(r)[ba(r) � R(r)]. (32)

The E(r) rotation can be used to force some of the elements in

the ~l matrix to zero, ~mr,s(r) = 0. Depending on the problem

at hand, the following three choices of E(r) rotation have

been used in GSRB calculations: (a) E(r) = identity, which

means the SRB molecule-fixed axes are locked to the axes

of convenience, (b) E(r) chosen so that the SRBmolecule-fixed

axes are principal axes, and, in the case of planar molecules, (c)

E(r) chosen so that ~my,r(r) = ~mr,y(r) = 0 for all r. Since
~mx,r(r) and ~mz,r(r) are identically zero for planar molecules, the

HBJ axes of choice (c) result in the elimination of the rotation-

large-amplitude vibrational coupling caused by the operator

products ĴxĴr, ĴyĴr, and ĴzĴr. This is the axis choice in the

current work. Note that HBJ-axes can be generalized to non-

planar molecules and that other choices of E(r) are possible

as well.

If a molecule becomes linear at some point in its large-

amplitude motion it is crucial that E(r) be chosen so that at

that point the z-axis lies along the molecule. Otherwise the

singularity in l will interfere with the calculation of the ĤSRB

matrix elements, rather than being subsumed in the solution of

eqn (29).

All the elements of the SRB Hamiltonian matrix are

specified by the atomic masses and the nuclear coordinates

aa and their dependence on the large amplitude coordinate r.
We can express these elements in terms of matrix products

by taking aa, ba, and R as column vectors and defining

the arrays

Fig. 5 (a) SRB molecule-fixed-axes and (b) axes of convenience

for NCNCS. The vectors ba give the locations of the nuclei relative

to the axes of convenience. The vector R points to the location

of the center of mass, while all aa are relative to the SRB molecule-

fixed axes.
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A = [a1,. . .,aN], B = [b1,. . .,bN], R = [R,. . .,R], and

M ¼

m1 0 � � � 0
0 m2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � mN

2
6664

3
7775; ð33Þ

where M is the matrix of the masses of the individual nuclei in

the molecule, so that,

A = E(r) (B � R). (34)

With this notation we can write the elements of the standard

symmetric 3 � 3 moment of inertia tensor of eqn (4) as

~Ix;x ¼þ ½AMAt�y;y þ ½AMAt�z;z;

~Iy;y ¼þ ½AMAt�x;x þ ½AMAt�z;z;

~Iz;z ¼þ ½AMAt�x;x þ ½AMAt�y;y;

~Ix;y ¼� ½AMAt�x;y;

~Ix;z ¼� ½AMAt�x;z;

~Iy;z ¼� ½AMAt�y;z;

ð35Þ

(Where all matrix products AMAt with an index y are zero in

the case of a two-dimensional molecule in the x, z plane).

Using a prime 0 to denote differentiation with respect to r, the
extra elements in the symmetric 4 � 4 extended moment

of inertia matrix ~I can be written in the following

(and other) ways,

~Ix;r ¼þ ½A0MA
t�z;y � ½A0MA

t�y;z;

~Iy;r ¼þ ½A0MA
t�x;z � ½A0MA

t�z;x;

~Iz;r ¼þ ½A0MA
t�y;x � ½A0MA

t�x;y;

~Ir;r ¼þ ½A0MA0
t�x;x þ ½A0MA0

t�y;y þ ½A0MA0
t�z;z:

ð36Þ

For a planar molecule such as NCNCS the simple form of the

moment of inertia tensor means that choosing the rotation

E(r) so that ~Iy,r(r) = ~Ir,y(r) = 0 is enough to guarantee that

~my,r(r) = ~mr,y(r) = 0, i.e. that the SRB axes are HBJ axes. In

the planar case only one angle is needed to specify the relative

orientation of the SRB-molecule-fixed axes and the axes of

convenience shown in Fig. 5(b). Denoting this angle e, the
derivative of the coordinate array A is then

A0 ¼ d

dr
EðrÞðB � RÞ

¼ e0Eð1ÞðB � RÞ þ EðB0 � R0Þ
ð37Þ

where E(r) � E, and,

EðrÞð1Þ � Eð1Þ ¼ d

de
E: ð38Þ

Thus for a planar molecule the HBJ axes are obtained if

0 ¼ Iy;r ¼ ½A0MA
t�x;z � ½A0MA

t�z;x

¼ þe0½Eð1ÞðB � RÞMðB � RÞtEt�x;z

� e0½Eð1ÞðB � RÞMðB � RÞtEt�z;x

þ ½EðB0 � R0ÞMðB � RÞtEt�x;z

� ½EðB0 � R0ÞMðB � RÞtEt�z;x;

ð39Þ

leading to the condition on e0 for the HBJ axes for planar

molecules,

e0 ¼�
½EðB0 �R0ÞMðB�RÞtEt�x;z�½EðB0 �R0ÞMðB�RÞtEt�z;x
½Eð1ÞðB�RÞMðB�RÞtEt�x;z�½Eð1ÞðB�RÞMðB�RÞtEt�z;x

:

ð40Þ

For a linear-planar molecule such as NCNCS e(r) is then

obtained by choosing e(r = 0) = 0 so that the SRB z-axis

aligns with the molecular axis at linearity, and then numeri-

cally integrating eqn (40) from r = 0 to r.
For any value of r, the elements of the matrix ~l and its

determinant ~m can be obtained from ~I by direct inversion [see

eqn (19)]. The required derivatives can be obtained from the

relationships,

~m0 ¼ �~l~I 0~l;

~m00 ¼ �~l ~I 00~l� 2~l~I 0~l~I 0~l;

~m0 ¼ �~mTrace ð~l~I 0Þ;

~m00 ¼ þ~m½Trace ð~l~I 0Þ�2 � ~mTrace ð~l ~I 00Þ � ~mTrace ð ~m0 ~I 0Þ:
ð41Þ

Thus all elements of the SRB Hamiltonian can be determined

in terms of the A matrix once the elements of ~I as given in

eqn (35) and (36) are calculated, along with their first through

second order derivatives with respect to r.
Because the r elements given in eqn (36) already involve the

first derivative of the nuclear coordinates with respect to r, we
need the third derivatives of the nuclear coordinates with

respect to r. Using eqn (34), which gives the A matrix in terms

of the axes-of-convenience matrix B, the elements of ~I and

their derivatives can be expressed entirely in terms of analytic

expressions involving B and its derivatives. These expressions

are general in the sense that they do not depend on the molecule

or on the form of the large amplitude motion. Although

straightforward, the calculation of these analytic expressions

is tedious and the results are rather complicated. The impor-

tant point is that all the elements needed for the construction

of the SRB Hamiltonian can be written in terms of the array B

and its derivatives [along the lines of eqn (39)]. The contri-

bution of ref. 8 was to do exactly this, thereby allowing for

easy generalization of the SRB technique to any single large

amplitude motion of any molecule. That is, the main part of

the Generalized SRB, or GSRB, program is entirely written in

terms of general analytic expressions involving the arrays M

and B, B0, B0 0, and B0 0 0. The arrays B, B0, B0 0, and B0 0 0
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themselves are simply the r dependent coordinates (and their

derivatives with respect to r) of the nuclei with respect to the

axes of convenience. They are therefore easy to evaluate in

terms of the molecular internuclear distances and bond angles

(both as functions of r) and are the only part of the GSRB

which is specific to a particular molecule. These arrays are

calculated in a molecule-specific subroutine with the GSRB

main program assembling the required elements of the SRB

Hamiltonian from the analytic expressions involving these

simple results.

One point to remember is that a fitting of the geometric

parameters of the GSRB model refers to a fitting of the

equilibrium position of the reference configuration. The

parameters describing the potential energy function V(r) can
also be fitted, as can bond relaxation parameters and several

ad hoc parameters that may be needed in particular cases.

2.3 Discussion of centrifugal distortion effects and the

potential function used in the GSRB Hamiltonian

The main output of the GSRB program is a set of energy

eigenvalues for the range of quantum numbers requested,

along with the fitted parameters when a least-squares adjust-

ment is requested. The model accounts for the bulk of the

effects of the large-amplitude vibration. However, even states

in which only the large-amplitude vibration is excited are

affected by the small-amplitude modes. These effects are not

directly included in the GSRB and, although generally small,

those that depend strongly on J can grow to dominate the

deviations between observed and calculated transition

frequencies. This can make it difficult to perform a useful

fitting of the GSRB to experimental data. This is because the

GSRB model parameters become distorted when trying to

account for effects not included in the model. These difficulties

can be addressed by simply adding small correction terms to

the GSRB Hamiltonian, thereby ‘‘cleaning’’ up the fittings. By

this we mean that the bulk of the effect of the not-included

factors can be subsumed by the ‘‘clean-up’’ parameters,

allowing the GSRB to account more directly for the physics

which it does describe. Indeed, twenty years ago it had already

been recognized that the small amplitude vibrations can

contribute as much as 10% of the splitting of the Ka = 1

(or l=1) levels.8 This contribution can be accounted for in an

‘‘effective’’ manner by introducing a parameter q̂ and

by adding and subtracting, as appropriate, the quantity
1
2
q̂J(J + 1)(vb + 1) to the two Ka = 1 energy levels,

respectively. The quantity q̂, representing that part of the

Ka = 1 splitting originating in the small amplitude vibrations,

analogous to the physical l-type doubling constant of a linear

molecule, is then determined in the least-squares fitting.

Calculations which incorporate this term in the Hamiltonian

can be labeled as GSRB+q. In the least-squares fittings for

NCNCS, however, the uncertainty in q̂ was larger than the

fitted value, i.e. the parameter was, within its error, zero,

meaning that for NCNCS (as was the case in ref. 8) the

large-amplitude motion part of the GSRB model accounted,

within the limits of the least-squares fitting, for the difference

in Beff values between the Ka = 1 asymmetry pairs. We

therefore fixed q̂ to zero in the final fitting.

Large-amplitude motion leads to effects which have the

same J-dependence as centrifugal distortion. However, the

GSRB does not account for centrifugal distortion itself. To

account for that part of the apparent centrifugal distortion not

directly due to the large-amplitude motion we can add addi-

tional terms to ĤSRB of eqn (23). In this work we add one such

term to do this,

ĤCD = �D(r)Ĵ4 (42)

where

D(r) = D0 + D2r
2 + D4r

4. (43)

This term is simply added to ĤSRB and included in the

determination of the matrix representation and subsequent

matrix diagonalization as performed in Step 2 in Sub-section 2.2,

above. The three constantsD0,D2, andD4 are then determined

in the least-squares fitting to the experimental data.

Calculations which incorporate such terms can be labeled

as GSRB+CD. As we shall see below, the contributions due

to ĤCD vary weakly and smoothly with Ka, and vb unlike the

large-amplitude contributions accounted for by the GSRB

itself. That is, the strong variation due to monodromy is

described by the GSRB, while the CD terms simply clean

up the fitting.

The bulk of the experimental data reported here is for high J

levels which are beyond the reasonable range of calculation

due to the GSRB’s neglect of centrifugal distortion (other than

the optional inclusion of the leading diagonal centrifugal

distortion terms in a GSRB+CD calculation). Previously this

type of situation was handled by using linear-molecule S-state
parameters fitted to high J data to calculate ‘‘synthetic’’

transitions at low J for use in fitting in the GSRB program.

In the current work we started in that way but eventually

introduced a new option into the GSRB program. With this

option the program first calculates ro-vibrational energies up

to J = 25. In each vibrational level, vb, and for each value of

Ka and symmetry (e or f), these GSRB calculated energies are

used to fit values of the constants of the simple linear molecule

energy level formula,

E = E0 + Beff(vb, Ka, ef)J(J + 1) � Deff(vb, Ka, ef)J
2(J + 1)2

+ Heff(vb, Ka, ef)J
3(J + 1)3. (44)

(Note that for Ka = 0 there is only one sequence, while for all

other values of Ka there are two sequences of levels, the

‘‘asymmetry pairs’’, labeled by their symmetry e or f44 or

by the conventional asymmetric rotor rotational JKa,Kc
).

Similarly, linear molecule S-state constants were extracted

from the experimental data [although using a model including

the next higher centrifugal distortion term, LeffJ
4(J + 1)4].

Although a power series in J(J + 1) cannot perfectly mimic

asymmetry effects, the fact that both sets of effective constants

are obtained in the same way allows limitations of the strategy

to cancel out. The GSRB model parameters were then

adjusted to fit the Beff and Deff constants calculated with the

GSRB to those extracted from the experimental data.

The relative weight used for the Deff and Beff constants in the

least-squares fittings was set by first performing a range of

least-squares fittings in which the relative weight was varied.
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As the relative weight of the Deff constants was increased by

many orders of magnitude the RMS error of the Beff constants

stayed constant while that of the Deff constants steadily but

slowly improved. A relative weight on the Deff constants below

104 led to a large RMS error on the fitted values of the Deff

constants, while a relative weight of 1010 or more results in an

increase in the RMS errors of the Beff constants. In the range

of reasonable relative weights of 104 to 109 the square of the

ratio of the RMS errors of the Beff constants to those of the

Deff constants remained a constant 1.6 � 108. This value was

therefore taken as the model limited value to use as the relative

weights of the Deff values to the Beff values in the least-squares

fitting. Since this value corresponds roughly to the inverse of

the ratio of the squares of the experimental statistical errors on

the two sets of constants the Beff and Deff values therefore

contribute almost equally to the fit.

The least-squares fitting of the GSRB model was

accomplished with the adjustment of only a small number of

parameters. The CS internuclear distance, rCS, is expressed as

a quadratic function of r

rCS(r) = rCS(re) + r2CS(r
2 � re

2). (45)

The CS equilibrium distance, rCS(re), and its semi-rigidity with

respect to r, the constant r2CS, were adjusted in the least

squares fitting. The other nuclear distances were held fixed

at the equilibrium values given in Table 3. This choice of

variables will be discussed in section 5. The NCN and NCS

angles were expanded as linear functions of r, each taking the

value 1801 at linearity (r= 0), and the ab initio values given in

Table 3 at the equilibrium configuration, neither of which was

adjusted in the least-squares fitting. The potential energy

function used for the large-amplitude bending vibration was

the modified quadratic well with Lorentzian hump introduced

by Barrow, Dixon, and Duxbury.45

VðrÞ ¼ Hð1þ cr2Þfaaðr2 � r2eÞ
2

faar4e þ ½8Hð1þ cr2Þ � faar2e �r2
; ð46Þ

where H is the height of the potential barrier to linearity, re is
the non-zero equilibrium value of r which is the compliment of

the equilibrium CNC angle, faa is the harmonic force constant

at equilibrium, and c adjusts the anharmonicity around

equilibrium. All four potential energy function parameters

were adjusted in the non-linear least-squares fitting procedure,

making a total of 6 GSRB adjusted parameters. In addition,

for the final GSRB+CD fitting, three effective centrifugal

distortion constants were fitted, D0, D2, and D4. All final

parameters, both adjusted and held fixed, are reported in

Table 3. These will be discussed in more detail in section 5.1.

All GSRB calculations were done on a notebook computer.

Eqn (29) was solved using a grid of 625 points on the interval

r = 0 to 2.1 rad, while the matrix representation of the

Hamiltonian described in Step 2, above, was done using a

basis set of vb = 0–12. This provides an adequate basis for

calculations through vb = 7.

A full least-squares cycle, including the numerical calcula-

tion of the derivatives with respect to the 9 parameters of the

GSRB+CD model and a run with the new parameters, takes

roughly 2 min on a 2.00 GHz Intel(R) Core(TM)2 Due CPU

Lenovo T61 computer running Windows XP Service Pack 3

and Lahey/Fujitsu Fortran 95 Compiler.

3. Experimental details

Cyanogen iso-thiocyanate, NCNCS, was prepared by the

pyrolytic isomerization reaction of sulfur dicyanide, S(CN)2
following the method described by King and Kroto.5 The

precursor molecule S(CN)2 was synthesized using a procedure

analogous to that given by Long and Steele,51 described in

detail in a recent publication by Kisiel et al.46 The purified

S(CN)2 in crystallized form was stored in a Schlenk tube52 in

dry ice. All NCNCS spectral measurements were carried out in

a flow regime with the Schlenk tube directly attached to the

inlet port of the vacuum pyrolysis system, which was

connected to an inlet port of the absorption cell. In order to

maintain sufficient S(CN)2 vapor pressure for the isomeriza-

tion reaction the Schlenk tube was kept at room temperature.

The quartz pyrolysis tube was heated to ca. 855 1C and the

reaction zone, about 20 cm in length, was filled with crushed

quartz chips which were secured on both sides with quartz

wool. The hot reaction gases passed through a cold trap

at �45 1C in order to remove the un-reacted S(CN)2 before

the gaseous reaction products entered the 6 m long aluminium

absorption cell. During the measurements a total pressure of

5 mTorr was maintained for the flow. From the spectra, which

have a signal to noise of about 2000 : 1 for the strong NCNCS

lines, only the trace components HCN and HNCS were

identified. These are secondary reaction products of NCNCS

and S(CN)2. No S(CN)2 lines could be identified.

The spectra of NCNCS were recorded using the Fast Scan

Sub-millimetre Spectroscopic Technique (FASSST), as

originally described in ref. 55, with further modifications and

improvements covered in ref. 56 and 57. Relative frequency

calibration of spectra recorded during the fast sweep of the

source frequency was achieved by means of simultaneously

recorded fringes obtained by directing some of the microwave

radiation to a 9.5 MHz free spectral range (15 m length) ring

Table 3 Results of the Generalized Semi-Rigid Bender (GSRB+CD)
analysis of NCNCS rotational transitions

Parameters Ab initioa GSRB+CD GSRB, ref. 8

Geometry
rN1C1

/Å 1.161 =ab initio 1.164
rC1N2

/Å 1.314 =ab initio 1.343
rN2C2

/Å 1.210 =ab initio 1.218
rC2S

/Å 1.551 1.55812 (18) 1.52945 (11)

r2C2
=Å rad

�2 0.08353 (31) 0.09689 (22)

+(NCN)equ/1 176.5 =ab initio 172.0
+(NCS)equ/1 174.6 =ab initio 173.8

Potential energy function
+(CNC)equ/1 143 143.327 (17) 140.983 (11)
H/hc/cm�1 285 272.79 (33) 270.93 (25)
faa/aJ rad�2 0.109 +0.08133 (17) +0.07713 (10)
c �0.04491 (51) �0.04785 (65)

Centrifugal distortion
D0/Hz +43.1 (26)
D2/Hz rad�2 �43.9 (89)
D4/Hz rad�4 +91.1 (69)

a Geometric parameters from last column of Table 1.
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cavity. Absolute frequency calibration was made on the basis

of line positions of the reference gas sulfur dioxide (SO2),

which was placed in a 0.5 m cell following the main absorption

cell. The FASSST spectra were recorded in five different

frequency segments, using three different millimetre-wave

Backward Wave Oscillator (BWO) sources, as indicated in

panel a of Fig. 6. At room temperature and at 165 1C, 200

individual scans in positive and negative frequency direction

were recorded. Each scan was calibrated separately and, in the

process, a small proportion of the scans was rejected by the

calibration software. The individual scans were then co-added

and the spectral segments were properly stitched together in

amplitude and frequency to yield separate up- and down-

scanned spectra covering the range from 110 to 375 GHz.

Spectra obtained in this way are subject to small-scale fluctua-

tions in frequency calibration caused by reproducible fluctuating

scan rates of the BWO tubes. However, since the fluctuations in

up and down scans are in opposed frequency directions,56

considerable improvement in the accuracy of measured line

positions was obtained by averaging peak positions measured

in up- and down scans. In ref. 46 it was established that an even

more convenient way to arrive at the final spectrum was to

simply add the up- and down-scanned spectra.

At the time of the NCNCS measurements we recorded all

200 up-scans followed by 200 down-scans. Due to variations in

sample pressure and thermal drifts in the system, there was a

slight variance in spectral line intensity patterns between

up- and down-scans. In order to perform the co-addition of

the up- and down-scan spectra we normalized the line

intensities in one direction to match the other data set before

co-adding the two sets of spectra. The resulting line positions

were comparable in accuracy to the matching entries in the

peak-finder tables resulting from averaged line peak values.

Shortly after these measurements we switched to recording

the down-scan immediately after the up-scan, thus eliminating

the need for the above mentioned intensity normalization

procedure. The accuracy of frequency measurements

obtainable with the FASSST spectrometer following this

procedure was discussed in ref. 46. That work furnished

convincing arguments that for un-blended lines the line

position accuracy is close to �50 kHz, which appears to be

the case also for the present NCNCS measurements.

Additionally, after these measurements the spectrometer

calibration software was modified to account for the effects

of the changing atmospheric index of refraction in the vicinity

of the strongly absorbing water lines as described in ref. 57. At

the time of the NCNCS measurements, no record of the

laboratory air humidity and temperature was made. However,

one of the features of the new calibration software is the ability

to fit for those parameters. Several individual scans were

calibrated in this mode to obtain a faithful measure of the

humidity at the time of the measurements with the assumption

that room temperature was 25 1C. The rest of the scans were

re-calibrated using the adjusted correction parameters.

The consistency of the data, especially over 300 GHz, was

noticeably improved.

While frequencies can be measured very precisely, the

accurate determination of the absorption coefficients still

Fig. 6 The re-scaling of the intensities for the NCNCS spectrum: Panel a shows in the top set of black markers the predicted peak intensities for

the a-typeKa = 0, 1 and 2 rotational transitions for the ground vibrational state, vb = 0, using theWatson Hamiltonian analysis for an asymmetric

rotor. The lower trace in panel a constitutes the raw (not yet intensity normalized) spectrum between 115 GHz and 375 GHz. The five ranges

covered by the three BWOs OB-86, OB-24 and OB-30 are indicated in five different colors. Panel b depicts the normalization function obtained by

ratioing the predicted and experimental peak intensities following the procedure outlined in ref. 46. Panel c shows the final, normalized, FASSST

spectrum of NCNCS. This spectrum contains 115 000 line positions. The blue dots indicate SO2 calibration lines.47–50
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remains a notoriously difficult challenge. As Kisiel et al.46 have

pointed out, the intensity problem is normally disregarded in

narrow-band spectra, but becomes of increasing relevance in

the analysis of broad-band FASSST laboratory spectra. The

assignment of such a high-information FASSST spectrum,

which for NCNCS contains more than 100 000 lines distributed

over a spectral region of several hundred Gigahertz, can only be

dealt with using interactive graphical assignment techniques. In

order to enhance the recognition of characteristic patterns, or

to use the intensity information directly, it thus becomes

mandatory to have reliable intensity information.

For this reason the experimental intensities of the room-

temperature FASSST spectrum of NCNCS were re-calibrated

on the basis of 400 un-blended, ground state, a-type Ka = 0,1

and 2 rotational transitions in the spectral region from

110 GHz to 360 GHz. These transitions were the only ones

that could be assigned and reasonably fitted to a Watson type

Hamiltonian (A-reduction) in the SPFIT program of Pickett;3

adding Ka = 3 lines increased the standard deviation

dramatically. For the excited vibrational states, the fits are even

worse. The constants thus determined are listed in Table 4. Only

a slightly better fit might be obtained using the S-reduction. The

constants obtained are in any case of little physical significance,

but adequate for the intensity calculation.

The RMS deviation of the fit, even for this limited data set,

was 1.08 MHz which is well outside the experimental accuracy

of� 50 kHz. King et al.7 recognized that the higher Ka lines do

not cluster close to the Ka = 0 transition, as is expected for

near-prolate semirigid molecules, a fact which is clearly

displayed in Fig. 2. Therefore the anomalously large centrifu-

gal distortion constants of Table 4, necessary to reproduce just

the Ka = 2 lines have no physical significance. However, this

effective parameter set allowed us to calculate appropriate

intensities for the a-type Ka = 0,1 and 2 rotational transitions

which could then be used in the intensity re-scaling procedure.

Following the procedure outlined in ref. 46, the experi-

mental and calculated intensities for these NCNCS lines were

used to derive the intensity correction array using linear

interpolation between the 400 fairly sparse predicted transi-

tions. The re-scaled FASSST spectrum assumed an intensity

envelope with a Boltzmann hump as expected. The individual

steps are displayed in Fig. 6. The top panel a of Fig. 6 shows

the raw spectrum between 115 GHz and 375 GHz. To obtain

predicted peak intensities for the ground state low-Ka lines we

simulated the Doppler-limited spectrum using Gaussian line

profiles. This procedure reproduces the linear dependence of

the Doppler line width on frequency. A constant value for the

a-type dipole moment component was assumed at this early

stage of the data processing, taken from an early result of the

ab initio calculations, ma = 3.1626 D, which lies in the middle

of the range spanned by the final ab initio results in Table 2.

Since the sample was very pure, and the vapor pressure was

measured, this procedure provided absolute intensities, under

the assumption of a constant dipole moment value for all

series. The peak intensities of the simulated spectrum are

plotted as markers in the top trace in panel a of Fig. 6. Panel

b shows the normalization function obtained by ratioing the

predicted and experimental peak intensities. Panel c shows the

final, now intensity-normalized, spectrum with lines belonging

to the SO2 calibration gas marked with blue dots.

4. Data reduction and assignment procedures

The assignment of the FASSST spectrum was carried out

using the CAAARS program4,58 running on the platform

IgorPro. This program package provides a Loomis–Wood-

type display53,54 of the original spectrum as shown in Fig. 7.

Under actual assignment conditions the screen display is

overlaid with markers for line centers. Predicted line positions

for the series to be identified are marked prominently in red

and green colors as is shown in Fig. 7 after successfully

assigning series for Ka = 2 for the vibrational bending state

vb = 4. Convenient interactive functions allow rapid conse-

cutive assignment of lines in a series. This act of ‘‘assignment’’

enters the line center in a table of assigned lines together with

the quantum numbers of the predicted line, a specified default

estimated error and the line intensity, all sorted according to

branch label definitions. At any time, with a single

click CAAARS stores this list into an input file for the Jet

Propulsion Laboratory (JPL) program package SPFIT/

SPCAT,3 and the fitting program runs immediately in a few

seconds. Another click loads the new predictions, and the

assignment process can proceed. In the best case for easily

identifiable transitions, up to 600 lines could be assigned in a

day. So far, 9204 rotational lines have been assigned.

The rotational frequencies clearly fall into series in J0 0

(see Fig. 7) that can be assigned to a given vibrational state

vb and Ka rotational level, in the notation of an asymmetric

rotor, with asymmetry splitting for low Ka. As already noted,

an asymmetric top Hamiltonian and a linear model were

equally useless. This forced us to devise a labeling procedure

in the CAAARS program that could be used with the SPFIT

and SPCAT routines to determine effective parameters for

such a molecule with large amplitude vibrational motion.

We resorted to simply identifying each series by the vibra-

tional quantum number it would have as a bent molecule, vb,

and its angular momentum about the figure axis a in Fig. 1,

Table 4 Derived spectroscopic constants for NCNCS from 400
ground state rotational transitions for Ka = 0, 1, and 2 using Watson
A-reduction

Spectroscopic constants Ground state vb = 0

A/MHz 97007.710(267)
B/MHz 1628.0244124(63)
C/MHz 1599.3908401(54)
DJ/kHz �0.418564507(165)
DJK/MHz 0.98752349(121)
DK/MHz 2986.603(43)
dJ/kHz �0.062265055(209)
dK/kHz 40.05111(206)
FJ/mHz 0.9754448(100)
FJK/Hz 6.149066(67)
FK/kHz �0.06070827(305)
FKJ/kHz 7.256510(293)
fJ/mHz 0.2512794(127)
LJ/nHz �3.63347(64)
LJJK/mHz 0.1523219(42)
LJK/Hz �0.4254926(165)
LKKJ/kHz �6.839427(58)
sfit/MHz 1.081
Nlines 400
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given by quantum number Ka, which is identical to the l

quantum number for a linear molecule. Since the e and f

symmetry of the components44 in the cases where the Ka

degeneracy is lifted was not obvious, as we shall see, they

were labeled as ‘‘U’’ or ‘‘L’’ for upper or lower component,

according to the frequency of the observed transitions. The

raw data for the series in J0 0 are thus labeled by vb, Ka and U or

L. For comparison with the GSRB calculations, we will later

include e and f, and also the asymmetric rotor notation where

relevant. vb, Ka and ‘‘U’’ or ‘‘L’’ were encoded in a ‘‘hash’’ of

two digits, allowing all series for two values of vb to

be included in one data set. [Hash for (vb, Ka,U/L): n =

(vb + 1) � 50 + Ka + (U/L) � 25, where U/L = 0 for lower,

1 for upper.] The assignments were assembled in the assign-

ment process in this manner into 4 data files.

Each series of rotational transitions was fit independently

with a power series in J(J + 1), giving spectroscopic constants

as for a diatomic molecule: Beff, �Deff, Heff, and Leff. These

four constants were necessary for each series. They are listed

for NCNCS in Tables 5–7. The rotational transition

frequencies are listed with the obs-calc values resulting from

the polynomial fits in the supplementary data in one Table for

the states vb = 0 to 6. For some series, higher order terms were

called for, but these cases represent either cases of identifiable

accidental resonances, unidentifiable resonances, or low Ka

levels with asymmetry effects (or linear molecule vibrational

effects) for which it is known that a power series in J(J + 1)

cannot reproduce the series. In these cases, after following a

series for purposes of assignment as completely as possible

with a higher order polynomial, or a local polynomial, the

polynomial was truncated to four terms, and the high-J lines

or those showing an obvious resonance were given low weights

(artificially high estimated experimental errors) but are

included in the list of assigned lines.

The vb and Ka assignments were initially made following the

assignments of King et al.,7 for vb up to 3 and Ka up to 8. For

higher vb and Ka, we relied on the predicted Beff values

obtained using the GSRB model. Intensity was also consid-

ered. Later, just as we began to find more than one legitimate

candidate for some Ka levels in the vb = 4 and 5 states

(see Fig. 7), and predictions from preliminary fittings became

available, we realized that the reproduction of the observed

Deff values by the GSRB predictions was more reliable and

informative than we had dared to hope, and that these values

provided a second and independent piece of information for

making assignments. This was especially true for low Ka levels.

The low Ka assignments for vb = 4, 5 and 6 were only possible

using GSRB predictions of both the Beff and Deff values.

Fig. 8 shows reduced Fortrat diagrams [traditionally,

plotted as frequency vs. J0 0, but more revealing for a-type

rotational transitions as frequency /2(J0 0 + 1) vs. J0 0] of the

measured and assigned rotational transitions. The plots show

the full range of the measured data, including the earlier data

of King et al.7 which fall below the Ka labels for vb = 0 to 3.

Gaps in the curves below J0 0 = 35 and around J0 0 = 50 are

due to the limits of the BWO frequency ranges. Smaller gaps

Fig. 7 In this Loomis–Wood53,54 diagram the CAAARS4 assignment window displays 20 successive excerpts of the millimetre wave spectrum of

NCNCS for the rotational transitions from J0 0=35 to 54. The positions of successive lines of a candidate series are aligned above one another with

an offset in frequency by an amount roughly equal to the spacing of 2Bv. Other series with similar values of Bv can clearly be recognized. The two

series assigned for the Ka = 2 rotational transitions, after considering six other candidate series in this diagram, are marked in green and red for the

state vb = 4, and flagged below the frequency axis.
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scattered through the spectrum indicate local resonances

where the most perturbed lines could not be found. These

gaps became slowly more frequent, until starting at vb = 5,

they become very numerous, and many series cannot be

recovered at higher J0 0. This is attributed to a sudden increase

in the density of vibrational states, due to the lowest excited

levels of the other bending vibrations. The S/N is not yet a

problem at this level of excitation, though increasing number

of candidates for assignment and resonances are.

The Fortrat diagrams reveal much more, however. For each

series, the intersection of the curve described by each series

with the axis at J0 0 = 0 defines Beff. Furthermore, the

Table 5 Experimentally determined effective rotational and centrifugal distortion constants for NCNCS in the vibrational bending states vb = 0,
1 and 2 for different values of Ka. Indicated uncertainties are the standard errors from power series fits.

vb Ka L/U Beff(vb, Ka)/MHz Deff(vb, Ka)/Hz Heff(vb, Ka)/mHz Leff(vb, Ka)/nHz

0 0 1613.72024(59) 671.187(142) 8.5769(133) �89.18(42)
0 1 L 1607.50471(61) 408.815(144) 2.5474(134) �257.1(42)
0 1 U 1621.89691(61) 532.201(147) 2.1918(139) �5.37(45)
0 2 L 1617.32946(60) 435.909(146) 1.9831(139) �11.85(45)
0 2 U 1617.31796(67) 181.278(179) �5.8500(188) 73.43(67)
0 3 L 1621.04643(69) 350.931(161) �0.2504(149) 15.78(47)
0 3 U 1621.04249(69) 349.102(161) 0.5669(149) �5.74(47)
0 4 L 1625.42595(74) 352.677(180) 0.4419(175) 3.09(57)
0 4 U 1625.42895(64) 353.634(158) 0.5346(156) 1.19(52)
0 5 L 1630.22071(62) 352.901(153) 0.8176(148) �7.36(48)
0 5 U 1630.21656(62) 351.346(154) 0.6156(150) 1.07(49)
0 6 1635.25005(62) 349.620(151) 0.7065(146) �0.46(48)
0 7 1640.42933(63) 348.582(156) 0.7356(153) �0.94(51)
0 8 1645.69773(67) 349.363(174) 0.8016(167) �2.36(54)
0 9 1651.01563(65) 350.895(165) 0.8354(164) �3.56(55)
0 10 1656.35415(71) 352.442(178) 0.7655(175) �1.29(58)
0 11 1661.70774(72) 355.887(185) 0.7783(183) �1.66(61)
0 12 1667.06143(77) 360.035(195) 0.7726(194) �1.37(65)
0 13 1672.41158(73) 365.340(187) 0.7934(188) �1.90(64)
0 14 1677.75164(75) 371.241(193) 0.7941(196) �1.89(67)
0 15 1683.08216(75) 378.368(195) 0.8248(198) �2.60(68)
0 16 1688.39843(76) 385.922(198) 0.8132(202) �1.95(70)
0 17 1693.70179(77) 394.490(199) 0.8125(202) �1.77(69)
0 18 1698.99306(79) 404.242(206) 0.8241(211) �1.91(74)
0 19 1704.27217(79) 415.301(207) 0.8478(213) �2.30(74)
0 20 1709.53908(89) 427.666(229) 0.8737(233) �2.97(81)
1 0 1610.21182(63) 634.487(154) 6.5465(148) �70.72(48)
1 1 L 1605.63767(68) 401.031(176) 2.2471(181) �15.58(63)
1 1 U 1620.03168(60) 531.257(146) 2.5191(139) �7.01(45)
1 2 L 1617.74694(61) 415.543(148) 2.1131(141) �11.32(45)
1 2 U 1617.74290(64) 250.143(152) �4.1421(143) 56.85(46)
1 3 L 1623.38262(78) 349.795(177) 0.1524(163) 8.35(52)
1 3 U 1623.37718(62) 347.954(152) 0.4953(147) 0.92(48)
1 4 L 1629.21893(83) 348.463(268) 0.7900(340) �10.51(150)
1 4 U 1629.21723(63) 347.407(155) 0.5830(151) 1.92(49)
1 5 1635.08277(69) 345.058(180) 0.6548(170) 0.43(54)
1 6 L 1640.92632(81) 346.165(259) 0.9400(330) �13.72(148)
1 6 U 1640.92485(85) 345.541(285) 0.8470(380) �9.27(171)
1 7 1646.71768(63) 345.747(158) 0.7455(154) �1.30(51)
1 8 1652.46031(65) 347.764(165) 0.7528(164) �1.45(55)
1 9 1658.15155(72) 350.654(180) 0.7467(177) �1.23(59)
1 10 1663.79614(68) 354.687(172) 0.7604(170) �1.58(57)
1 11 1669.39548(74) 359.391(188) 0.7623(187) �1.55(63)
1 12 1674.95424(75) 365.011(190) 0.7790(189) �1.92(64)
1 13 1680.47404(76) 371.148(200) 0.7816(204) �1.91(70)
1 14 1685.95986(85) 378.046(230) 0.7796(232) �1.57(79)
1 15 1691.41422(81) 385.967(208) 0.8162(209) �2.67(71)
2 0 1602.53497(84) 605.362(270) 5.8500(340) �21.73(148)
2 1 L 1604.05538(62) 351.096(145) 2.5908(135) �12.18(42)
2 1 U 1618.48566(62) 472.541(150) 3.4777(143) �13.26(46)
2 2 L 1619.73001(61) 359.287(148) 2.3063(140) �12.120(450)
2 2 U 1619.72799(61) 309.000(148) �3.2178(141) 45.270(450)
2 3 L 1627.37668(104) 337.310(320) 0.1070(400) 3.82(178)
2 3 U 1627.37529(105) 336.479(312) 0.4500(390) 16.68(168)
2 4 L 1634.45966(87) 338.184(232) 0.6579(220) �3.84(70)
2 4 U 1634.45918(80) 338.101(250) 0.6634(307) �4.66(128)
2 5 L 1641.15771(63) 339.196(159) 0.6987(157) �2.43(52)
2 5 U 1641.15594(63) 338.563(159) 0.6206(157) 0.65(52)
2 6 1647.58752(63) 341.602(158) 0.7126(156) �1.93(52)
2 7 1653.81686(65) 344.675(165) 0.7037(164) �1.35(55)
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dominant curvature definesDeff. Although our first calculation

with the GSRB alerted us to the fact that the vibrational

dependence of Beff for Ka = 0 would reverse at vb = 4, we were

not prepared for the equally dramatic changes in the value of

Deff for Ka = 0, 1, and 2, which emerged as the data were

assigned. The monodromy effects on the curvature totally

overwhelm the centrifugal distortion due to small-amplitude

vibrations. On the other hand for higher Ka, the linear

dependence of Beff on Ka, and the nearly constant Deff, even

for the vb = 0 state, are remarkable, as they show that the

molecule is behaving in those states as a very linear molecule;

for an asymmetric rotor, the Ka-dependence of Beff would be

much smaller, and be proportional to roughly K2
a, corresponding

to a term with DJK. With hindsight, all of these properties of

the Fortrat diagrams make physical sense, but no one had

considered these aspects of the spectra of quasi-linear or,

Table 6 Experimentally determined effective rotational and centrifugal distortion constants for NCNCS in the vibrational bending states vb = 2,
3, 4 and 5 for different values of Ka. Indicated uncertainties are the standard errors from power series fits.

vb Ka L/U Beff(vb, Ka)/MHz Deff(vb, Ka)/Hz Heff(vb, Ka)/mHz Leff(vb, Ka)/nHz

2 8 1659.89466(66) 348.754(167) 0.7103(166) �1.33(56)
2 9 1665.85194(70) 353.642(178) 0.7233(180) �1.46(61)
2 10 1671.70974(74) 359.109(192) 0.7382(193) �1.77(66)
2 11 1677.48420(75) 365.013(192) 0.7409(193) �1.75(65)
2 12 1683.18993(76) 371.740(197) 0.7632(201) �2.22(69)
2 13 1688.83364(79) 378.664(207) 0.7507(212) �1.53(73)
2 14 1694.42692(81) 386.814(205) 0.8111(206) �3.47(70)
2 15 1699.97198(90) 394.935(235) 0.8047(242) �3.17(85)
3 0 1597.58748(83) 279.737(254) 8.5261(309) �72.89(128)
3 1 L 1606.49839(71) 228.413(187) 2.6299(177) �6.62(55)
3 1 U 1621.68872(84) 315.540(263) 3.293(33) �19.43(139)
3 2 L 1624.83974(82) 392.046(261) �3.998(33) 12.276(141)
3 2 U 1624.83595(66) 273.366(163) 2.2068(160) �14.71(53)
3 3 L 1633.55499(64) 329.536(156) �0.6768(150) �17.88(49)
3 3 U 1633.55956(65) 331.158(157) 1.0896(150) 12.89(49)
3 4 L 1641.28462(64) 334.307(161) 0.5732(159) �16.67(53)
3 4 U 1641.28173(64) 333.365(167) 0.3994(167) 10.07(56)
3 5 L 1648.42057(65) 338.307(162) 0.6204(160) �5.96(54)
3 5 U 1648.42095(65) 338.148(161) 0.5441(158) 0.45(52)
3 6 1655.17173(67) 342.955(173) 0.6108(175) �1.84(60)
3 7 1661.65091(69) 348.471(182) 0.6593(183) �2.37(62)
3 8 1667.92654(76) 354.535(194) 0.7243(195) �4.08(66)
3 9 1674.04251(75) 360.328(190) 0.7013(190) �2.50(64)
3 10 1680.03174(76) 366.775(202) 0.7194(208) �2.78(72)
3 11 1685.91848(112) 373.43(34) 0.696(35) �1.52(120)
3 12 1691.71928(83) 381.282(218) 0.7716(227) �4.16(80)
4 0 1609.87312(130) �64.670(390) 5.1240(470) �137.36(196)
4 1 L 1614.44767(72) 114.748(171) 2.8687(159) 6.54(50)
4 1 U 1631.41814(71) 175.623(172) 1.5524(164) �29.80(53)
4 2 L 1633.04912(215) 574.030(900) �5.415(153) 551.4(89)
4 2 U 1633.04981(78) 186.969(193) 2.0008(189) �21.96(63)
4 3 L 1641.65715(102) 338.379(302) �4.5190(330) 30.52(115)
4 3 U 1641.68550(73) 351.005(182) 3.1620(176) �2.18(58)
4 4 L 1649.45413(82) 346.646(196) 0.5492(188) �61.51(62)
4 4 U 1649.44764(82) 344.301(193) 0.1140(184) 36.79(60)
4 5 L 1656.67406(83) 348.325(219) 0.5491(223) �18.17(75)
4 5 U 1656.67139(84) 346.959(224) 0.2319(228) 9.29(77)
4 6 L 1663.52096(80) 353.165(210) 0.5615(215) �6.95(73)
4 6 U 1663.51931(80) 352.389(210) 0.4275(215) 0.60(74)
4 7 1670.09128(91) 359.401(264) 0.6602(289) �6.65(106)
4 8 1676.44750(79) 365.087(205) 0.6403(209) �4.28(72)
4 9 1682.63919(86) 372.431(249) 0.7474(263) �6.74(91)
4 10 1688.69304(77) 378.588(202) 0.6633(208) �3.13(72)
4 11 1694.63345(95) 385.646(238) 0.6531(237) �3.48(81)
4 12 1700.48590(85) 395.737(221) 0.9249(227) �17.73(80)
5 0 1625.67774(163) �263.00(60) 5.333(88) �479.3(45)
5 1 L 1624.80697(116) 28.18(37) 5.762(46) �4.89(196)
5 1 U 1644.03739(96) 81.743(271) �1.0097(301) �13.53(114)
5 2 L 1643.1014(38) 949.05(181) 4.90(35) 1327.6(244)
5 2 U 1643.03901(80) 102.243(210) 2.0390(216) �47.99(75)
5 3 L 1651.0329(32) 387.34(151) �1.1340(279) 110.1(179)
5 3 U 1651.06566(80) 405.321(200) 8.5765(198) �90.36(66)
5 4 L 1658.5505(83) 376.7(48) 0.60(107) �261.(82)
5 4 U 1658.5501(53) 377.69(303) 0.71(71) �13.(58)
5 5 L 1665.66695(84) 378.198(229) 1.2907(237) �84.20(82)
5 5 U 1665.64505(87) 369.043(251) �0.3312(274) 37.92(101)
5 6 L 1672.4499(45) 375.16(145) 0.662(189) �25.4(85)
5 6 U 1672.4346(41) 369.56(137) �0.189(183) 20.7(83)
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perhaps just as relevant, barely-bent molecules. Most of the

remaining Figures in this paper are reformulations of informa-

tion contained in this plot.

5. Analysis of the NCNCS data

5.1 GSRB analysis

In earlier applications the GSRB model was fitted to the

observed transition frequencies, generally for J o 10. In the

absence of compensation for centrifugal distortion due to

small-amplitude vibration, such an approach is appropriate

for such low values of J. In the present case, other than

a narrow range of microwave lines involving J = 8 to 11

(and only for the lowest bending vibrational levels), the

experimental data obtained are from MMW and Sub-MMW

data starting at J0 0 = 33 and extending very much higher.

Even with the GSRB extended to J = 25, there is no overlap

with the new observations. We therefore followed Bunker

et al.59 by fitting to the experimentally determined Beff values,

rather than directly to the transition frequencies. In this

way, effects that are not rigorously modeled in the GSRB

Hamiltonian, such as the centrifugal distortion effects, do not

bias the GSRB fitting. New in the current work is the inclusion

of the experimentally determined Deff values in the fitting as

discussed in section 2.3. That is, we performed a non-linear

least-squares adjustment of the parameters of the GSRB+CD

Hamiltonian to fit to the experimentally determined Beff and

Deff values given in Table 5 through Table 7.

Fig. 9a presents the observed and GSRB+CD-calculated Beff

values for each bending vibrational level as a function of Ka.

For completeness in the Figures, values for e-symmetry levels

are plotted atKa Z 0, while those for f-symmetry are plotted at

Ka o 0. As in the previous two papers, the asymmetry splitting

is averaged, and the plot corresponds to the classical case with

+Ka and�Ka. Here can be seen the prototypical behaviour due

to monodromy of NCNCS as already shown for vb = 0 to 5 in

ref. 1 and discussed in ref. 2. Indeed, it is this striking variation

of the effective rotational constants with vb and Ka that allows

the GSRB+CD to accurately determine the potential energy

function from rotational data alone.

Fig. 9b shows in analogous form the GSRB+CD-calculated

term values as a function of Ka for relevant bending

vibrational levels. Also shown is a selection of unit cells

representing an augmentation of each of Ka and vb by one.

As is now well known (for example see Fig. 9 of ref. 2 and

the associated text) the definitive signature of quantum

monodromy can be seen by constructing such unit cells

for a sequence of points enclosing the monodromy point

(here vb D 3, Ka = 0). At the completion of one loop around

the monodromy point, the unit cell does not return to its

original configuration. Instead quantum monodromy has

induced a robust dislocation in the energy level grid.

The observed and GSRB+CD-calculated Deff values are

shown in the left hand panels of Fig. 10 and 11, again with

values for e-symmetry plotted at Ka Z 0 and those for

f-symmetry plotted at Ka o 0. In these Figures, the asymmetry

effects have not been averaged out. The variation of the

observed values is well reproduced in the GSRB+CD values.

This agreement is particularly impressive for vb = 6, for which

no experimental data were included in the least-squares fitting.

It is important to note that the strongly Ka-dependent

variations and the major portion of the slowly varying

contribution are fully accounted for by the basic GSRB model.

The additional terms that were fitted, D0, D2, and D4, give rise

to nearly constant, smoothly varying contributions to the

calculated Deff values in the range of 40–50 Hz, indicated by

the blue diamonds in each of these Figures. While these

Table 7 Experimentally determined effective rotational and centrifugal distortion constants for NCNCS in the vibrational bending states vb = 5
and 6 for different values of Ka. Indicated uncertainties are the standard errors from power series fits.

vb Ka L/U Beff(vb, Ka)/MHz Deff(vb, Ka)/Hz Heff(vb, Ka)/mHz Leff(vb, Ka)/nHz

5 7 L 1678.99482(90) 377.664(226) 0.583.9(228) 12.06(78)
5 7 U 1678.98981(87) 375.915(221) 0.349.6(221) 1.50(75)
5 8 1685.36469(96) 388.202(308) 1.202.(33) 30.38(111)
5 9 1691.53967(301) 384.15(148) �2.76.(293) �46.9(203)
5 10 1697.44384(83) 388.763(221) 0.744.3(228) 3.18(80)
5 11 1703.10715(129) 398.29(46) 0.999.(63) 0.02191(297)
5 12 1709.53931(89) 427.730(231) 0.879.8(236) 3.16(82)
6 0 1639.0587(43) �653.39(229) �1.18(50) �1464.0(380)
6 1 L 1635.40962(194) �73.20(72) 15.206(102) �246.0(51)
6 1 U 1656.97613(95) �30.720(251) �6.2951(269) 69.83(98)
6 2 L 1653.7616(58) 1540.2(33) 44.30(80) 1975.0(670)
6 2 U 1653.62908(82) �15.459(207) 0.8833(205) �71.30(69)
6 3 L 1661.0253(33) 443.46(164) �33.41(33) 1107.0(233)
6 3 U 1661.1105(33) 498.57(146) 20.301(267) �389.4(172)
6 4 L 1668.19949(140) 421.96(51) �1.821(73) �352.8(35)
6 4 U 1668.23402(117) 438.91(38) 1.141(48) 208.68(211)
6 5 L 1675.052(38) 391.3(172) �3.0(33) 63.0(2380)
6 5 U 1674.959(170) 364.0(710) �6.6(131) 310.(900)
6 6 1681.7701(81) 407.4(52) 1.06(143) �136.(139)
6 7 1688.2575(236) 428.4(184) 9.5(62) �1370.(750)
6 8 1694.53254(275) 408.66(129) 0.692(241) �51.7(156)
6 9 1700.6884(236) 427.2(184) 7.5(62) �1280.(750)
6 10 1707.60871(88) 413.722(238) 0.8355(253) �2.88(92)
6 11 1712.96200(82) 425.374(223) 0.8837(236) �4.25(84)
6 12 1718.29093(86) 437.273(230) 0.8462(242) �2.84(87)
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contributions do not dominate the Deff values, they are large

enough to distort the fit if neglected. The lack of convergence

of the series of coefficients observable in Table 3, is not a

problem since the series alternates in sign and is simply the

minimum number of constants sufficient to reproduce a rather

large set of small, smooth, nearly flat contributions. These

modest corrections can be attributed to non-resonant effects of

the small-amplitude vibrations.

The agreement detailed in Tables 8–11 as well as in

Fig. 9–11 between experimental and GSRB values shows that,

although the GSRB model and our least squares strategy

can not quite achieve experimental accuracy, the model does

quantitatively reproduce all of the surprising and anomalous-

seeming effects of monodromy.

The patterns seen for Deff at low Ka are not actually

surprising, when one realizes that they represent the effects

Fig. 8 Reduced Fortrat diagram of the assigned rotational frequencies of NCNCS in the ground state and the lowest 6 excited states of the quasi-

linear bending mode vb. The colors of the curves serve merely to distinguish the series of transitions with low Ka and to highlight Ka = 12 as

representative of high Ka. The black triangles indicate the values of the experimentally determined Beff values. The color coding for the vb labels is

the same as in Fig. 2 and 3.
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of DK = 2 (in the symmetric top basis) interactions, over the

whole range of vb. These effects include a) asymmetry effects

near the asymmetric rotor limit, in the lowest three vb states

(vb r 2), (b) l-type doubling and l-type resonance near the

linear limit in the upper three states (vb Z 4), and (c)

interactions between the nearest levels of the appropriate Ka

and symmetry, regardless of vibrational identity, near the

monodromy point, indicated particularly by the indeterminate

patterns of Deff for vb = 3. In each case, these effects show up

prominently as a second order dependence of the frequencies

on J(J + 1), and thus in the value of Deff.

The most remarkable example of the mapping of the

properties of the potential function into the set of Deff values

is the reversal of the sign of the Ka = 2 splitting. The ordering

of the two Ka = 2 levels in the ground state is just as you

would expect for an asymmetric rotor: the upper level of the

doublet (e symmetry in linear molecule notation, and E+

Wang matrix of an asymmetric rotor) is pushed up by the

lower Ka = 0 level (also e, or E+). But that splitting decreases

significantly for vb = 1, and is extremely small for vb = 2. In

fact, when the entire measured range of J for vb = 2 is

considered, the splitting is observed to reverse at J = 80, as

shown in Fig. 12. A look at the plot of E(Ka, vb)/hc (Fig. 9b)

shown in the inset in Fig. 12 shows that for vb = 2, the Ka = 2e

level sees two Ka = 0 levels which are almost equally far away:

one below, and one above. Because of the differences in Beff

values of the three levels, as J increases, the lower partner

drifts farther away, and the upper one draws closer. The

splitting reverses, since the other Ka = 2 level (f-symmetry

and E�) does not interact with Ka = 0. For vb > 2 the

inversion of the Ka = 2 levels is maintained, and the splitting

increases rapidly in magnitude, as the Ka = 2 levels approach

the upper Ka = 0 level more and more closely. The inversion

of the splitting of the transitions, thus also of the doublet

energy levels, reflects the loss of physical significance of

the vibrational quantum number in the region of the mono-

dromy point. The molecule does not, however, become

truly linear: the anharmonicity represented by the barrier

prevents the Ka = 2 doublet levels from rising above the

Ka = 0 level carrying the next higher vb label, even for high vb
(see Fig. 9b).

As can be seen in Table 10, the residuals of the Beff values

for vb = 5, Ka Z 10 do not follow the trend for lower Ka

values. Also, for vb = 6 the equivalent comparison for Deff

values revealed that as a function of Ka the observed Deff

values scatter irregularly around the smooth trend of the

GSRB+CD-calculated values (see Table 11). It seems likely

that these highly excited levels may be interacting with other

nearby modes; the other four bending fundamentals are

predicted1 to lie between 430 and 483 cm�1, which increases

the density of interacting states rapidly. We have therefore

excluded Beff and Deff values for vb = 5, Ka Z 10 and

all values for vb = 6 from the least-squares fitting. Thus

any agreement between the observed values and the

GSRB+CD-calculated values for these quantities indicates

the extrapolative power of the GSRB+CD model. The fitted

Fig. 9 Monodromy plots for NCNCS. Panel a shows the experimental and calculated quantum lattice of the effective rotational constants Beff as a

function of Ka and vb, representing the end-over-end rotational energy contribution. The experimental Beff values are connected by lines while the

theoretical GSRB predictions are not. The experimental data for vb = 6, which are shown as small crosses for visibility, were not included in the

fitting. They are almost indistinguishable from the GSRB predictions. Panel b shows the corresponding two-dimensional energy-momentum map

for NCNCS represented by the bending-rotation term values E(Ka, vb) plotted for J = Ka. The data due to asymmetry splitting for the lower Ka

values were averaged, and the plots extended to Ka o 0 to be analogous to the classical case.
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values of Beff, while not providing experimental accuracy, are

all within 0.26 MHz of experiment, with the exception of two

values for vb = 5, and the fitted Deff are all within 10 Hz of

experiment.

Fig. 10 Experimentally determined effective centrifugal distortion constants Deff andHeff for NCNCS in the states vb = 0 to 4, shown in red, overlaid

on those calculated by the fitted GSRBHamiltonian, shown in blue. Values for e-symmetry levels are plotted at Ka Z 0, while those for f-symmetry are

plotted at Ka o 0. The curves defined by blue diamonds show the total contribution of the centrifugal distortion correction term [eqn (42)–(43)].
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Heff values were also extracted from the GSRB+CD-calculated

energies and are also compared with the experimental values in

Tables 8–11. The observed and GSRB+CD-calculated values

are shown in the right hand panels of Fig. 10 and 11. The

parameter Heff was determined from polynomial fits to both

the experimental and GSRB transition frequencies, but was

not included in the fits. Again, we see a distinctive pattern

(right-hand panels of Fig. 10 and 11) which undergoes a

characteristic transformation as vb increases, and we see that

the predictions and the observed patterns coincide closely up

until vb = 6. This good agreement helps to confirm the

assignments through vb = 5, and indicates again the effect

of accidental resonances becoming significant for vb = 5 and

especially 6. The large deviations found for vb = 6 are so far

from the predictions that they must be the result of inter-

actions with other states.

The doublet reversal seen in the patterns forDeff is not observed

and not expected for Heff in Fig. 10 and 11. For Ka = 3, the

ordering follows that ofKa = 1, yielding a third order dependence

of the splitting on J(J + 1), and the doublet sequence remains as

for an asymmetric rotor. For Ka = 4, the GSRB predictions

indicate that an inversion occurs at vb = 2, following that of the

Ka= 2 levels. It appears from the plot ofE(Ka, vb) /hc versus Ka in

Fig. 9b that theKa = 6 doublet will invert at vb= 1.We conclude

that the odd Ka doublets will not invert, but the even Ka doublets

must all invert. These conclusions are the basis for the assignments

of e and f symmetry in Tables 8–11. The assignment is consistent

with the GSRB calculations, with what has previously been

observed for quasi-linear molecules close to the linear limit, and

with the special role of the Ka = 0 levels for even Ka, in particular

the E+ Wang block of eigenvalues.

Thus, to summarize this, another aspect of the mapping of

monodromy into the spectrum is given by Fig. 13, which

shows the splitting of the three resolved low Ka doublets as a

function of vb. Both the experimental splittings and those

predicted from the final GSRB calculation are plotted. The

Ka = 1 splitting, represented as the difference DBeff between

the e and f transitions, shows a pronounced kink, going from

the nearly constant value typical of the inertial splitting in an

asymmetric rotor to a strong linear dependence, typical of the

l-type doubling of a linear molecule, as noted in section 5.6.1

of ref. 2. The Ka = 2 splitting is shown as a plot of the

difference DDeff between the transitions since they share a

common Beff and the splitting is dominated by a second order

term. This splitting is monotonic, but passes through zero near

the monodromy point, increasing in magnitude rapidly above

it. For Ka = 3 we consider DHeff, since the splitting between

the e and f components is a third-order term in the Wang

approximation of a rigid rotor. This inertial term is very small

in an asymmetric rotor when it is as close to a symmetric rotor

as NCNCS is already in its ground state. It is initially nearly

constant with vb, as expected for an inertial parameter

depending on a given geometry, but reaches a minimum at

vb = 2. At higher vb it is dominated by the DKa = 2

interactions of Ka = 3 with Ka = 1 levels both above and

below it, and must therefore increase rapidly with vb.

5.2 Resonance interactions

A variety of local resonance interactions were identified in the

spectrum. These are listed in Table 12 and lead to anomalously

large deviations of the Beff,Deff, andHeff values for some of the

Fig. 11 Experimentally determined effective centrifugal distortion constantsDeff andHeff for NCNCS in the states vb= 5 and 6, shown in red, overlaid

on those calculated by the fitted GSRBHamiltonian, shown in blue. Values for e-symmetry levels are plotted at Ka Z 0, while those for f-symmetry are

plotted at Ka o 0. The curves defined by blue diamonds show the total contribution of the centrifugal distortion correction term [eqn (42)–(43)].
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series, since not quite all transitions affected could be given

zero weight in the power series fittings. The differences in Ka

values for each of these pairs of interacting levels indicate

that they are all second or higher order Coriolis-type

interactions.

One of these resonances is illustrated in Fig. 14. Using the

symmetry notation of a linear molecule, we see that the vb,

Ka = 2, 4e/3, 1e levels cross at J = 76, while the vb, Ka =

2, 4f/3, 1f levels have an avoided crossing at J about 110. The

degeneracy of the pair of vb, Ka = 2, 4e/f levels is lifted over the

Table 8 Comparison between experimentally determined effective rotational and centrifugal distortion constants for NCNCS and their GSRB
calculated values in the vibrational bending states vb = 0 and 1 for different values of Ka. The least squares optimization was applied to these
constants. The first column of data, Eorigin = E(Ka, vb, J= Ka, e/f), is the calculated term value of the lowest level of each J-manifold, with J= Ka

as indicated by the quantum numbers and symmetry (e,f) in the first 5 columns. The effective spectroscopic constants Beff, Deff, and Heff are
functions of vb, Ka and symmetry.

vb J Ka Kc e/f L/U
Eorigin/
cm�1

Beff(obs)/
MHz

Beff (cal)/
MHz

(Obs � cal)/
MHz

Deff(obs)/
Hz

Deff(cal)/
Hz

(Obs � cal)/
Hz

Heff(obs)/
mHz

Heff(cal)/
mHz

(Obs � cal)a/
mHz

0 0 0 0 e 0.000 1613.720 1613.889 �0.168 671.19 675.26 �4.07 8.58 7.69 0.89
0 1 1 1 e U 3.418 1607.505 1607.556 �0.051 408.82 411.57 �2.76 2.55 2.94 �0.39
0 1 1 0 f L 3.418 1621.897 1622.141 �0.244 532.20 532.97 �0.76 2.19 2.23 �0.04
0 2 2 1 f U 13.377 1617.318 1617.409 �0.080 435.91 436.55 �0.64 1.98 2.11 �0.13
0 2 2 0 e L 13.377 1617.329 1617.409 �0.091 181.28 175.94 5.34 �5.85 �4.74 �1.11
0 3 3 1 e U 29.243 1621.042 1621.056 �0.010 350.93 347.30 3.63 �0.25 �0.39 0.14
0 3 3 0 f L 29.243 1621.046 1621.056 �0.014 349.10 347.28 1.82 0.57 0.78 �0.21
0 4 4 1 f U 50.322 1625.429 1625.387 0.039 352.68 351.62 1.05 0.44 0.58 �0.14
0 4 4 0 e L 50.322 1625.426 1625.387 0.042 353.63 351.62 2.01 0.53 0.58 �0.05
0 5 5 1 e 75.987 1630.221 1630.138 0.083 352.12 350.24 2.66 0.72 0.74 0.08
0 5 5 0 f 75.987 1630.221 1630.138 0.078 352.12 350.24 1.11 0.72 0.74 �0.12
0 6 6 1 f 105.705 1635.250 1635.149 0.101 349.62 348.46 1.16 0.71 0.81 �0.10
0 6 6 0 e 105.705 1635.250 1635.149 0.101 349.62 348.46 1.16 0.71 0.81 �0.10
0 7 7 1 e 139.035 1640.429 1640.321 0.109 348.58 347.56 1.02 0.74 0.85 �0.11
0 7 7 0 f 139.035 1640.429 1640.321 0.109 348.58 347.56 1.02 0.74 0.85 �0.11
0 8 8 0,1 e,f 175.607 1645.698 1645.589 0.109 349.36 347.83 1.53 0.80 0.86 �0.06
0 9 9 0,1 e,f 215.114 1651.016 1650.916 0.100 350.90 349.26 1.64 0.84 0.89 �0.05
0 10 10 0,1 e,f 257.297 1656.354 1656.274 0.081 352.44 351.77 0.68 0.77 0.89 �0.13
0 11 11 0,1 e,f 301.934 1661.708 1661.646 0.062 355.89 355.27 0.62 0.78 0.90 �0.12
0 12 12 0,1 e,f 348.838 1667.061 1667.021 0.040 360.04 359.69 0.35 0.77 0.91 �0.14
0 13 13 0,1 e,f 397.843 1672.412 1672.392 0.020 365.34 364.98 0.36 0.79 0.91 �0.12
0 14 14 0,1 e,f 448.807 1677.752 1677.751 0.000 371.24 371.13 0.11 0.79 0.92 �0.13
0 15 15 0,1 e,f 501.604 1683.082 1683.097 �0.015 378.37 378.12 0.24 0.82 0.93 �0.10
0 16 16 0,1 e,f 556.122 1688.398 1688.426 �0.028 385.92 385.99 �0.07 0.81 0.93 �0.12
0 17 17 0,1 e,f 612.264 1693.702 1693.737 �0.035 394.49 394.78 �0.29 0.81 0.94 �0.13
0 18 18 0,1 e,f 669.940 1698.993 1699.028 �0.035 404.24 404.58 �0.34 0.82 0.95 �0.12
0 19 19 0,1 e,f 729.071 1704.272 1704.299 �0.026 415.30 415.49 �0.19 0.85 0.95 �0.11
0 20 20 0,1 e,f 789.585 1709.539 1709.549 �0.010 427.67 427.69 �0.03 0.87 0.93 �0.05
1 0 0 0 e 85.037 1610.212 1610.426 �0.214 634.49 641.67 �7.19 6.55 6.64 �0.09
1 1 1 1 e L 90.100 1605.638 1605.696 �0.058 401.03 405.33 �4.30 2.25 2.62 �0.37
1 1 1 0 f U 90.100 1620.032 1620.232 �0.201 531.26 534.44 �3.18 2.52 2.61 �0.09
1 2 2 1 f L 103.596 1617.747 1617.791 �0.045 415.54 417.94 �2.39 2.11 2.24 �0.12
1 2 2 0 e U 103.596 1617.743 1617.791 �0.048 250.14 246.46 3.68 �4.14 �3.90 �0.24
1 3 3 1 e L 123.667 1623.383 1623.377 0.006 349.80 348.89 0.91 0.15 0.08 �0.07
1 3 3 0 f U 123.667 1623.377 1623.377 0.000 347.95 348.88 �0.92 0.50 0.71 �0.21
1 4 4 1 f L 149.016 1629.219 1629.190 0.029 348.46 347.47 1.00 0.79 0.68 0.11
1 4 4 0 e U 149.016 1629.217 1629.190 0.028 347.41 347.47 �0.06 0.58 0.68 �0.10
1 5 5 1 e L 178.764 1635.083 1635.049 0.034 345.06 345.52 �0.47 0.65 0.79 �0.13
1 5 5 0 f U 178.764 1635.083 1635.049 0.034 345.06 345.52 �0.47 0.65 0.79 �0.14
1 6 6 0 e L 212.289 1640.926 1640.892 0.035 346.17 344.92 1.24 0.85 0.81 0.13
1 6 6 1 f U 212.289 1640.925 1640.892 0.033 345.54 344.92 0.62 0.94 0.81 0.03
1 7 7 1 e L 249.129 1646.718 1646.694 0.024 345.75 345.67 0.08 0.75 0.89 �0.14
1 7 7 0 f U 249.129 1646.718 1646.694 0.024 345.75 345.67 0.08 0.75 0.89 �0.14
1 8 8 0,1 e,f 288.925 1652.460 1652.449 0.011 347.76 347.76 0.00 0.75 0.87 �0.12
1 9 9 0,1 e,f 331.392 1658.152 1658.154 �0.003 350.65 350.83 �0.17 0.75 0.88 �0.13
1 10 10 0,1 e,f 376.296 1663.796 1663.811 �0.015 354.69 354.79 �0.11 0.76 0.88 �0.12
1 11 11 0,1 e,f 423.441 1669.395 1669.422 �0.026 359.39 359.56 �0.17 0.76 0.89 �0.13
1 12 12 0,1 e,f 472.661 1674.954 1674.988 �0.033 365.01 365.07 �0.06 0.78 0.89 �0.11
1 13 13 0,1 e,f 523.812 1680.474 1680.511 �0.037 371.15 371.29 �0.14 0.78 0.91 �0.13
1 14 14 0,1 e,f 576.771 1685.960 1685.994 �0.034 378.05 378.18 �0.14 0.78 0.90 �0.12
1 15 15 0,1 e,f 631.426 1691.414 1691.439 �0.025 385.97 385.77 0.19 0.82 0.91 �0.09
1 16 16 0,1 e,f 687.683 1696.848 394.08 0.91
1 17 17 0,1 e,f 745.453 1702.221 403.15 0.92
1 18 18 0,1 e,f 804.661 1707.561 413.05 0.93
1 19 19 0,1 e,f 865.236 1712.869 423.83 0.93
1 20 20 0,1 e,f 927.116 1718.146 435.61 0.90

a Heff values were not included in the GSRB fitting.
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range of J from 68 to 83 by the Coriolis interaction involving

the e-levels. Since the Beff and Deff values of all four of these

interacting sequences of levels are well determined from the

unperturbed lines, we can precisely determine the difference

between the corresponding [E(k � Ka = J, vb) /hc]/cm
�1 term

values, quantities which are among the eigenvalues calculated

by the GSRB. We can use this as a test of the GSRB+CD’s

accuracy in determining the vibrational energy levels, despite

the lack of vibrational data in the least-squares fitting. We do

this by interpolating the sequence of the interacting levels

Table 9 Comparison between experimentally determined effective rotational and centrifugal distortion constants for NCNCS and their GSRB
calculated values in the vibrational bending state vb = 2 and 3 for different values of Ka. The least squares optimization was applied to these
constants. The first column of data, Eorigin = E(Ka, vb, J= Ka, e/f), is the calculated term value of the lowest level of each J-manifold, with J= Ka

as indicated by the quantum numbers and symmetry (e,f) in the first 5 columns. The effective spectroscopic constants Beff, Deff, and Heff are
functions of vb, Ka and symmetry.

vb J Ka Kc e/f L/U
Eorigin/
cm�1

Beff(obs)/
MHz

Beff(cal)/
MHz

(Obs � cal)/
MHz

Deff(obs)/
Hz

Deff(cal)/
Hz

(Obs � cal)/
Hz

Heff(obs)/
mHz

Heff(cal)/
mHz

(Obs � cal)a/
mHz

2 0 0 0 e 162.940 1602.535 1602.557 �0.022 605.36 613.13 �7.77 5.85 6.35 �0.50
2 1 1 1 e L 173.029 1604.055 1603.955 0.100 351.10 354.37 �3.27 2.59 2.83 �0.24
2 1 1 0 f U 173.029 1618.486 1618.446 0.040 472.54 475.93 �3.39 3.48 3.58 �0.10
2 2 2 1 f L 192.708 1619.730 1619.650 0.080 359.29 361.25 �1.97 2.31 2.44 �0.13
2 2 2 0 e U 192.708 1619.728 1619.650 0.078 309.00 308.81 0.19 �3.22 �3.15 �0.06
2 3 3 1 e L 218.522 1627.377 1627.315 0.062 337.31 338.32 �1.01 0.11 0.23 �0.12
2 3 3 0 f U 218.522 1627.375 1627.315 0.061 336.48 338.32 �1.85 0.45 0.77 �0.32
2 4 4 0 e L 248.975 1634.460 1634.419 0.041 338.18 338.35 �0.17 0.66 0.62 0.04
2 4 4 1 f U 248.975 1634.459 1634.419 0.041 338.10 338.35 �0.25 0.66 0.62 0.04
2 5 5 1 e L 283.237 1641.158 1641.141 0.017 339.20 339.43 �0.24 0.70 0.82 �0.12
2 5 5 0 f U 283.237 1641.156 1641.141 0.015 338.56 339.43 �0.87 0.62 0.82 �0.20
2 6 6 0 e L 320.774 1647.588 1647.592 �0.004 341.60 341.96 �0.36 0.71 0.81 �0.10
2 6 6 1 f U 320.774 1647.588 1647.592 �0.004 341.60 341.96 �0.36 0.71 0.81 �0.10
2 7 7 1 e L 361.203 1653.817 1653.841 �0.024 344.68 345.33 �0.66 0.70 0.82 �0.12
2 7 7 0 f U 361.203 1653.817 1653.841 �0.024 344.68 345.33 �0.66 0.70 0.82 �0.12
2 8 8 0,1 e,f 404.232 1659.895 1659.933 �0.038 348.75 349.47 �0.72 0.71 0.84 �0.12
2 9 9 0,1 e,f 449.628 1665.852 1665.899 �0.047 353.64 354.27 �0.63 0.72 0.84 �0.12
2 10 10 0,1 e,f 497.203 1671.710 1671.759 �0.050 359.11 359.65 �0.54 0.74 0.85 �0.11
2 11 11 0,1 e,f 546.794 1677.484 1677.531 �0.046 365.01 365.58 �0.56 0.74 0.86 �0.12
2 12 12 0,1 e,f 598.265 1683.190 1683.224 �0.034 371.74 372.01 �0.27 0.76 0.87 �0.10
2 13 13 0,1 e,f 651.499 1688.834 1688.850 �0.016 378.66 378.96 �0.30 0.75 0.87 �0.12
2 14 14 0,1 e,f 706.389 1694.427 1694.413 0.013 386.81 386.41 0.40 0.81 0.88 �0.07
2 15 15 0,1 e,f 762.846 1699.972 1699.922 0.050 394.94 394.38 0.55 0.80 0.89 �0.08
2 16 16 0,1 e,f 820.786 1705.379 402.88 0.89
2 17 17 0,1 e,f 880.137 1710.789 411.95 0.90
2 18 18 0,1 e,f 940.831 1716.156 421.61 0.91
2 19 19 0,1 e,f 1002.809 1721.481 431.88 0.92
2 20 20 0,1 e,f 1066.017 1726.767 442.74 0.89
3 0 0 0 e 232.259 1597.587 1597.341 0.247 279.74 276.74 3.00 8.53 8.72 �0.19
3 1 1 1 e L 254.736 1606.498 1606.335 0.163 228.41 228.70 �0.29 2.63 2.92 �0.29
3 1 1 0 f U 254.736 1621.689 1621.509 0.180 315.54 315.07 0.47 3.29 3.66 �0.36
3 2 2 0 e L 283.013 1624.840 1624.724 0.116 392.05 394.57 �2.52 �4.00 �3.47 �0.53
3 2 2 1 f U 283.013 1624.836 1624.723 0.113 273.37 273.08 0.29 2.21 2.25 �0.04
3 3 3 1 e L 315.442 1633.555 1633.495 0.060 329.54 331.03 �1.49 �0.68 �0.48 �0.20
3 3 3 0 f U 315.442 1633.560 1633.495 0.064 331.16 331.06 0.10 1.09 1.11 �0.02
3 4 4 0 e L 351.302 1641.285 1641.260 0.024 334.31 334.30 0.01 0.57 0.55 0.02
3 4 4 1 f U 351.302 1641.282 1641.260 0.022 333.37 334.30 �0.94 0.40 0.57 �0.17
3 5 5 1 e L 390.148 1648.421 1648.429 �0.008 338.31 338.78 �0.48 0.62 0.66 �0.04
3 5 5 0 f U 390.148 1648.421 1648.429 �0.008 338.15 338.78 �0.64 0.54 0.66 �0.12
3 6 6 0 e L 431.663 1655.172 1655.202 �0.030 342.96 343.80 �0.84 0.61 0.72 �0.11
3 6 6 1 f U 431.663 1655.172 1655.202 �0.030 342.96 343.80 �0.84 0.61 0.72 �0.11
3 7 7 1 e L 475.602 1661.651 1661.694 �0.043 348.47 349.19 �0.72 0.66 0.75 �0.09
3 7 7 0 f U 475.602 1661.651 1661.694 �0.043 348.47 349.19 �0.72 0.66 0.75 �0.09
3 8 8 0,1 e,f 521.765 1667.927 1667.973 �0.046 354.54 354.92 �0.39 0.72 0.78 �0.05
3 9 9 0,1 e,f 569.989 1674.043 1674.084 �0.042 360.33 360.98 �0.65 0.70 0.79 �0.09
3 10 10 0,1 e,f 620.133 1680.032 1680.060 �0.029 366.78 367.36 �0.59 0.72 0.81 �0.09
3 11 11 0,1 e,f 672.076 1685.918 1685.923 �0.004 373.43 374.06 �0.63 0.70 0.82 �0.13
3 12 12 0,1 e,f 725.711 1691.719 1691.688 0.031 381.28 381.09 0.19 0.77 0.83 �0.06
3 13 13 0,1 e,f 780.945 1697.370 388.46 0.84
3 14 14 0,1 e,f 837.696 1702.977 396.15 0.85
3 15 15 0,1 e,f 895.887 1708.517 404.18 0.86
3 16 16 0,1 e,f 955.451 1713.997 412.54 0.87
3 17 17 0,1 e,f 1016.328 1719.421 421.22 0.88
3 18 18 0,1 e,f 1078.462 1724.794 430.19 0.90
3 19 19 0,1 e,f 1141.801 1730.119 439.35 0.91
3 20 20 0,1 e,f 1206.299 1735.398 448.66 0.91

a Heff values were not included in the GSRB fitting.
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down to J = 4 and thus determining the vibration–rotation

energy difference between vb = 3, Ka = 1e, J= 4, and vb = 2,

Ka = 4e, J = 4. The experimentally determined difference is

5.49 cm�1. The GSRB+CD values of these energy levels as

listed in Table 9 differ by 6.73 cm�1, within 1.25 cm�1 of the

experimental value. Considering the use of only the pure

rotational spectrum, as well as the limitations of the model

and fitting procedure, this is an acceptable deviation. We note

finally that all of the sets of resonance partners assigned in

Table 12 are similarly consistent with the calculated energy

Table 10 Comparison between experimentally determined effective rotational and centrifugal distortion constants for NCNCS and their GSRB
calculated values in the vibrational bending state vb = 4 and 5 for different values of Ka. The least squares optimization was applied to these
constants. The first column of data, Eorigin = E(Ka, vb, J= Ka, e/f), is the calculated term value of the lowest level of each J-manifold, with J= Ka

as indicated by the quantum numbers and symmetry (e,f) in the first 5 columns. The effective spectroscopic constants Beff, Deff, and Heff are
functions of vb, Ka and symmetry.

vb J Ka Kc e/f L/U
Eorigin/

cm�1
Beff(obs)/
MHz

Beff(cal)/
MHz

(Obs � cal)a/
MHz

Deff(obs)/
Hz

Deff(cal)/
Hz

(Obs � cal)a/

Hz
Heff(obs)/
mHz

Heff(cal)/
mHz

(Obs � cal)b/
mHz

4 0 0 0 e 304.636 1609.873 1609.938 �0.065 �64.67 �74.16 9.49 5.12 4.28 0.85
4 1 1 1 e L 340.463 1614.448 1614.456 �0.008 114.75 111.67 3.08 2.87 2.80 0.07
4 1 1 0 f U 340.463 1631.418 1631.382 0.036 175.62 172.34 3.28 1.55 1.72 �0.17
4 2 2 0 e L 377.137 1633.049 1633.038 0.011 574.03 579.68 �5.65 �5.42 �4.27 �1.14
4 2 2 1 f U 377.137 1633.050 1633.037 0.012 186.97 185.13 1.84 2.00 1.98 0.02
4 3 3 1 e L 415.878 1641.657 1641.685 �0.028 338.38 348.36 �9.99 �4.52 �2.91 �1.61
4 3 3 0 f U 415.878 1641.686 1641.685 0.001 351.01 348.47 2.53 3.16 2.73 0.43
4 4 4 0 e L 456.858 1649.454 1649.475 �0.021 346.65 345.81 0.84 0.55 0.28 0.27
4 4 4 1 f U 456.858 1649.448 1649.475 �0.028 344.30 345.84 �1.54 0.11 0.36 �0.25
4 5 5 1 e L 500.032 1656.674 1656.712 �0.038 348.33 348.98 �0.66 0.55 0.50 0.05
4 5 5 0 f U 500.032 1656.671 1656.712 �0.040 346.96 348.98 �2.02 0.23 0.50 �0.27
4 6 6 0 e L 545.300 1663.521 1663.561 �0.040 353.17 353.90 �0.73 0.56 0.60 �0.04
4 6 6 1 f U 545.300 1663.519 1663.561 �0.042 352.39 353.90 �1.51 0.43 0.60 �0.17
4 7 7 1 e L 592.551 1670.091 1670.123 �0.032 359.40 359.57 �0.17 0.66 0.66 0.00
4 7 7 0 f U 592.551 1670.091 1670.123 �0.032 359.40 359.57 �0.17 0.66 0.66 0.00
4 8 8 0,1 e,f 641.677 1676.448 1676.464 �0.017 365.09 365.68 �0.59 0.64 0.70 �0.06
4 9 9 0,1 e,f 692.577 1682.639 1682.629 0.011 372.43 372.10 0.33 0.75 0.73 0.02
4 10 10 0,1 e,f 745.158 1688.693 1688.647 0.046 378.59 378.77 �0.19 0.66 0.76 �0.09
4 11 11 0,1 e,f 799.335 1694.633 1694.543 0.090 385.65 385.69 �0.04 0.65 0.77 �0.12
4 12 12 0,1 e,f 855.032 1700.486 1700.334 0.152 395.74 392.82 2.91 0.92 0.79 0.14
4 13 13 0,1 e,f 912.177 1706.033 400.16 0.80
4 14 14 0,1 e,f 970.707 1711.652 407.68 0.82
4 15 15 0,1 e,f 1030.563 1717.197 415.35 0.83
4 16 16 0,1 e,f 1091.689 1722.676 423.12 0.84
4 17 17 0,1 e,f 1154.037 1728.095 430.90 0.86
4 18 18 0,1 e,f 1217.561 1733.457 438.58 0.89
4 19 19 0,1 e,f 1282.218 1738.767 445.90 0.93
4 20 20 0,1 e,f 1347.968 1744.025 452.53 0.88
5 0 0 0 e 389.599 1625.678 1625.933 �0.255 �263.00 �262.91 �0.09 5.33 5.30 0.04
5 1 1 1 e L 433.354 1624.807 1624.999 �0.192 28.18 22.24 5.94 5.76 4.82 0.94
5 1 1 0 f U 433.354 1644.037 1644.170 �0.133 81.74 81.24 0.50 �1.01 �0.62 �0.39
5 2 2 0 e L 476.531 1643.101 1643.157 �0.055 949.05 917.56 31.49 4.90 �3.24 8.14
5 2 2 1 f U 476.531 1643.039 1643.155 �0.116 102.24 101.00 1.25 2.04 1.88 0.16
5 3 3 1 e L 520.610 1651.033 1651.146 �0.113 387.34 400.96 �13.62 �11.34 �8.57 �2.77
5 3 3 0 f U 520.610 1651.066 1651.146 �0.080 405.32 401.22 4.10 8.58 7.43 1.15
5 4 4 0 e L 566.097 1658.551 1658.625 �0.074 376.70 378.32 �1.62 0.71 �0.09 0.69
5 4 4 1 f U 566.097 1658.550 1658.625 �0.075 377.69 378.44 �0.75 0.60 0.19 0.52
5 5 5 1 e L 613.165 1665.667 1665.703 �0.036 378.20 373.44 4.75 1.29 0.32 0.97
5 5 5 0 f U 613.165 1665.645 1665.703 �0.058 369.04 373.45 �4.40 �0.33 0.32 �0.65
5 6 6 0 e L 661.857 1672.450 1672.468 �0.018 375.16 374.47 0.69 0.66 0.46 0.20
5 6 6 1 f U 661.857 1672.435 1672.468 �0.033 369.56 374.47 �4.91 �0.19 0.46 �0.65
5 7 7 1 e L 712.161 1678.995 1678.984 0.011 377.66 378.05 �0.38 0.58 0.55 0.03
5 7 7 0 f U 712.161 1678.990 1678.984 0.006 375.92 378.05 �2.13 0.35 0.55 �0.20
5 8 8 0,1 e,f 764.037 1685.365 1685.298 0.066 388.20 382.91 5.29 1.20 0.61 0.59
5 9 9 0,1 e,f 817.437 1691.540 1691.445 0.094 384.15 388.53 �4.38 �0.28 0.66 �0.93
5 10 10 0,1 e,f 872.306 1697.444 1697.451 �0.008 388.76 394.61 �5.85 0.74 0.69 0.05
5 11 11 0,1 e,f 928.591 1703.107 1703.337 �0.229 398.29 401.02 �2.73 1.00 0.72 0.28
5 12 12 0,1 e,f 986.240 1709.539 1709.117 0.423 427.73 407.66 20.07 0.88 0.74 0.14
5 13 13 0,1 e,f 1045.202 1714.803 414.43 0.76
5 14 14 0,1 e,f 1105.429 1720.407 421.26 0.78
5 15 15 0,1 e,f 1166.876 1725.936 428.05 0.80
5 16 16 0,1 e,f 1229.502 1731.396 434.67 0.82
5 17 17 0,1 e,f 1293.266 1736.792 440.91 0.85
5 18 18 0,1 e,f 1358.132 1742.129 446.50 0.90
5 19 19 0,1 e,f 1424.063 1747.409 450.93 0.96
5 20 20 0,1 e,f 1491.028 1752.634 453.60 1.03

a vb = 5 levels with Ka Z 10 were not included in the GSRB fitting. b Heff values were not included in the GSRB fitting.
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level pattern of Fig. 9 b. As noted in section 5.1, the assigned

series of lines for vb = 5 and 6 show numerous further

resonances which could not be assigned within the sequence

of excited states of the quasi-linear bending mode.

5.3 Summary of the fitting, potential function, energy levels

and wave functions

The ab initio values from Table 3 were used as the initial

geometry for the GSRB calculations. The fitted GSRB+CD

parameters are also given in Table 3. Those parameters not

fitted were fixed to the ab initio values in the ‘‘Equ.’’ column of

Table 1. For comparison the last column of Table 3 gives the

parameters from the 1988 GSRB fitting of the microwave data

for the vb = 0 to 3 levels of NCNCS.8

There is a wide variety of choice in deciding which geometric

parameters to fit and which to leave at ab initio values. The

final choice was guided by the quality of the resulting fits, both

with respect to the final standard error and also with regard to

the stability of the fitting. It must be remembered that, at least

to first order, the GSRB geometry represents an averaging

over the zero point motion of the small amplitude vibrations.

It is therefore not strictly equivalent to the ab initio equili-

brium geometry. With data from only one isotopologue it was

only reasonable to fit one internuclear distance in such a nearly

linear structure. In the fittings the best results were obtained by

fitting the CS internuclear distance. This is not unreasonable

given the dominant mass of the sulfur atom. The final fitted

value for rCS is within 0.007 Å of the ab initio value.

Similarly, it was only possible to fit one internuclear distance

semi-rigidity parameter. Initially the semi-rigidity of each of the

four internuclear distances was taken from the ab initio calcula-

tions and each one of these values was adjusted in a least

squares fit. However, neither that, nor scaling all the semi-

rigidities by one parameter worked as well as simply choosing

one internuclear distance semi-rigidity and adjusting it, fixing

the remaining semi-rigidities to zero. The natural choice is the

CS bond semi-rigidity, and adjusting this did result in the best

fit. Again, due to this choice, as well as zero point averaging, the

ab initio and fitted semi-rigidity are not strictly comparable.

In the final least-squares fit given in Table 3 the one non-zero

semi-rigidity constant takes the value 0.08 Å rad�2. This value is

quite close to the value 0.07 Å rad�2 that would be the sum of

the ab initio semi-rigidities of all four internuclear distances. As

has been seen before, the one fitted semi-rigidity essentially acts

as a proxy for the overall increase or decrease in length of the

molecule upon bending.

Finally, the ab initio calculated variation of the +NCN and

+NCS bond-angles as a function of the bending coordinate

could be well modeled by odd functions in r up to the cubic

term. The ab initio calculations were done out to r = 701. To

ensure convergence of the GSRB calculations, the basis set

was extended up to vb = 12. This in turn required the GSRB

calculation to extend to about r = 1201. Unfortunately the

Table 11 Comparison between experimentally determined effective rotational and centrifugal distortion constants for NCNCS and their GSRB
calculated values in the vibrational bending state vb = 6 for different values of Ka. The least squares optimization was applied to these constants.
The first column of data, Eorigin = E(Ka, vb, J = Ka, e/f), is the calculated term value of the lowest level of each J-manifold, with J = Ka as
indicated by the quantum numbers and symmetry (e,f) in the first 5 columns. The effective spectroscopic constants Beff, Deff, andHeff are functions
of vb, Ka and symmetry.

vb J Ka Kc e/f L/U
Eorigin/
cm�1

Beff(obs)/
MHz

Beff(cal)/
MHz

(Obs � cal)a/
MHz

Deff(obs)/
Hz

Deff(cal)/
Hz

(Obs � cal)a/
Hz

Heff(obs)/
mHz

Heff(cal)/
mHz

(Obs � cal)b/
mHz

6 0 0 0 e 484.704 1639.059 1639.409 �0.350 �653.39 �628.35 �25.04 �1.18 5.13 �6.31
6 1 1 1 e L 533.359 1635.410 1635.694 �0.285 �73.20 �92.45 19.25 15.21 10.52 4.69
6 1 1 0 f U 533.359 1656.976 1657.189 �0.213 �30.72 �27.53 �3.19 �6.30 �5.29 �1.00
6 2 2 0 e L 581.368 1653.762 1653.901 �0.139 1540.20 1438.35 101.85 44.30 5.22 39.08
6 2 2 1 f U 581.368 1653.629 1653.897 �0.268 �15.46 �0.03 �15.43 0.88 1.99 �1.10
6 3 3 1 e L 629.786 1661.025 1661.230 �0.204 443.46 491.22 �47.76 �33.41 �20.46 �12.95
6 3 3 0 f U 629.786 1661.111 1661.230 �0.119 498.57 491.75 6.82 20.30 18.07 2.23
6 4 4 0 e L 679.119 1668.199 1668.311 �0.112 421.96 433.89 �11.93 �1.82 �0.68 �1.14
6 4 4 1 f U 679.119 1668.234 1668.311 �0.077 438.91 434.27 4.64 1.14 0.20 0.94
6 5 5 1 e L 729.610 1675.052 1675.139 �0.087 391.30 413.91 �22.61 �3.00 0.11 �3.11
6 5 5 0 f U 729.610 1674.959 1675.139 �0.180 364.00 413.91 �49.91 �6.60 0.13 �6.73
6 6 6 0 e L 781.373 1681.770 1681.739 0.031 407.40 406.92 0.48 1.06 0.31 0.75
6 6 6 1 f U 781.373 1681.770 1681.739 0.031 407.40 406.92 0.48 1.06 0.31 0.75
6 7 7 1 e L 834.453 1688.258 1688.141 0.117 428.40 405.76 22.64 9.50 0.43 9.07
6 7 7 0 f U 834.453 1688.258 1688.141 0.117 428.40 405.76 22.64 9.50 0.43 9.07
6 8 8 0,1 e,f 888.857 1694.533 1694.372 0.160 408.66 407.58 1.08 0.69 0.51 0.18
6 9 9 0,1 e,f 944.572 1700.688 1700.456 0.232 427.20 411.06 16.14 7.50 0.57 6.93
6 10 10 0,1 e,f 1001.577 1707.609 1706.411 1.197 413.72 415.54 �1.82 0.84 0.62 0.22
6 11 11 0,1 e,f 1059.840 1712.962 1712.253 0.709 425.37 420.62 4.76 0.88 0.65 0.23
6 12 12 0,1 e,f 1119.331 1718.291 1717.995 0.296 437.27 426.04 11.23 0.85 0.68 0.17
6 13 13 0,1 e,f 1180.014 1723.646 431.61 0.71
6 14 14 0,1 e,f 1241.856 1729.215 437.12 0.73
6 15 15 0,1 e,f 1304.825 1734.709 442.38 0.76
6 16 16 0,1 e,f 1368.888 1740.134 447.12 0.80
6 17 17 0,1 e,f 1434.013 1745.494 450.96 0.86
6 18 18 0,1 e,f 1500.173 1750.792 453.37 0.94
6 19 19 0,1 e,f 1567.337 1756.030 453.54 1.07
6 20 20 0,1 e,f 1635.480 1761.209 450.13 1.16

a None of the vb = 6 data was included in the GSRB fitting. b Heff values were not included in the GSRB fitting.
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cubic form for the variation of the +NCN and +NCS bond

angles gave unreasonable values when extrapolated to such

large angles and could not be used. Instead, as mentioned

above, a linear variation was chosen, with+NCN and+NCS

both set to 1801 when r = 0 and to their ab initio calculated

equilibrium values at r = re. The resulting linear function

follows the ab initio variation quite well over the classically

allowed regions.

The GSRB fitted potential energy function for the large

amplitude bending motion is shown in Fig. 15. Also shown, by

the round dots connected by an interpolated dashed line, are

the ab initio potential energy values from Table 2. The GSRB

potential energy function includes the variation with r of the

zero-point energy of all the small-amplitude vibrations and is

not expected to be identical to the ab initio function. In this

context the good agreement between these two potential

energy functions is quite satisfying.

The probability densities (PD), given by the squares of the

vibrational wave functions, are shown in Fig. 15 for Ka = 0

with their baselines set at their term values, [E(k, vb) /hc]/cm
�1.

The wave functions, expressed in polar coordinates, are those

defined in eqn (27). The resulting PDs are r-dependent and
give the probability for a ring on a spherical surface of width

dr, and thus refer to a volume element dr. These wave

functions must all go to zero at r= 0, the linear configuration,

which represents a singularity, as mentioned in section 2.2.

The PDs so defined are labeled as |cr|
2. To instead give a view

of the same wave function as it would appear in a cut through

a Cartesian coordinate giving the distance of the nucleus C1

from the axis defined by rN2C2
(see Fig. 4), we can show the PD

with the label |cc|
2 appropriate to a normalization dx. This is

Fig. 12 Simplified CAAARS Loomis–Wood diagram of the splitting

of the rotational transitions for vb = 2, Ka = 2. The frequency points

are calculated (polynomial fit to experimental data) to eliminate gaps;

the deviations are less than the point width. The inversion of the

splitting, so that the e component drops below the f component, true

both for the transition frequency and the level energies, reflects the loss

of significance of the vibrational quantum number in the region of the

monodromy point. In the inset, an enlargement from Fig. 9b around

the monodromy point, the DKa = 2 interactions are indicated by black

lines connecting the Ka = 0 levels with the Ka = 2 levels.

Fig. 13 Dependence on vb of the splitting of transitions for Ka = 1, 2,

and 3, represented by the dominant contributions DPeff. These are

DBeff for Ka = 1, DDeff for Ka = 2, and DHeff for Ka = 3, where

DPeff = Peff(vb, Ka, f) � Peff(vb, Ka, e). The GSRB values are shown as

solid blue circles while the experimentally determined splittings are

entered as open red triangles.

Table 12 Resonance interactions identified in the rotational spectrum
of NCNCS, with level crossings at the indicated value of J = Jc

Lower Upper

DKa Jcvb Ka vb Ka

0 5e 1 1e 4 >105
0 8e,f 1 5e,f 3 80
1 4e 2 0e 4 >102
1 6e,f 2 3e,f 3 108
2 4e 3 1e 3 76
2 4f 3 1f 3 110
2 5 3 1 4 >110
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readily done by simply plotting |cc|
2 = |cr|

2/r,16 shown by the

dashed curves in Fig. 15. The abscissa for this wave function,

shown at the top of Fig. 15, shows only half of the range of x

for which this wave function is defined, since negative values

are not shown; the values are given by rC1N2
sin r. For x o 0

the PDs are identical to those for x > 0.

The resulting very different forms of the probability

distributions have the property that they only really go to

zero at linearity for non-zero angular momentum, i.e. k �
Ka > 0, in which case r = 0 is a true node of the wave

function. For Ka > 0, therefore, the difference between the

two sets of curves is of minor importance, and is not illustrated

here. The abruptness of the change in the probability distri-

butions at the monodromy point is seen in the |cc|
2 curves in

the amplitude at the linear configuration, and also in the

change in the curvature of |cc|
2 at r = 0.

5.4 Dipole moment functions and expectation values of q and q2

As shown in Table 2 and Fig. 15b, the components of the

electric dipole transition moment as obtained from ab initio

calculations are not constant as a function of r, as assumed

early in this study when the experimental intensities were

roughly scaled. The expectation values of the two components

in the large-amplitude basis functions of eqn (27),

hCk�Ka,vb
(r)|m(r)|Ck�Ka,vb

(r)i (47)

were calculated and are plotted for each vb as a function of Ka

in Fig. 16a (ma) and Fig. 16b (mb). These figures strongly

resemble Fig. 9. Since the effective inertial constant and the

dipole moment are quantities with completely independent

physical properties, the striking similarity of their dependence

on Ka and vb indicates that this behaviour is related to how the

Fig. 14 Resonances between the levels vb, Ka = 2, 4 and 3, 1 are shown in excerpts of three separate Loomis–Wood diagrams, each centered on

the polynomial fitted to the unperturbed lines of the respective series of transitions affected. The e and f series for vb, Ka = 2, 4 are degenerate up to

J0 0 = 102, where the f component is affected by the resonance. The black dots are assigned transitions for vb = 2 or 3, and the red and green

markers are predictions from parameters determined from the unperturbed transitions in the interacting series. The blue crosses are unassigned

peak position markers, and the purple markers are lines assigned to vb = 0 or 1. Line intensities are suppressed in this presentation.
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large-amplitude bending vibration wave function is affected by

monodromy. To investigate this we show in Fig. 17 the

expectation values of the simple non-constant functions r
and r2, in the large-amplitude basis functions of eqn (27),

hCk�Ka,vb
(r)|r|Ck�Ka,vb

(r)i (48)

and

hCk�Ka,vb
(r)|r2|Ck�Ka,vb

(r)i. (49)

In these figures the same monodromy-induced dependence on

Ka and vb is clearly visible, showing that the effects of mono-

dromy are directly mapped into the wave-function. This means

that any quantity that has a dependence on the large

amplitude bending angle will take a form close to the patterns

seen in Fig. 17. We note that the monodromy map of Beff E
hmbi E hr2i, and hmai E hri, It was actually predictable that

monodromy is not only mapped into the lattice of the energy

levels plotted versus Ka, but also into the corresponding

large-amplitude bending wave-functions, and all quantities

depending on them.

5.5 The quasi-linear parameter as a representation of a unit

cell in quantum monodromy energy-momentum maps

The quasi-linearity parameter defined by Yamada and

Winnewisser2,60 in 1976 considered the ratio of the energy

interval between the ground state and the first Ka = 1 level,

and the interval between the ro-vibrational ground state and

the first vibrationally excited Ka = 0 level. This was suggested

as the basis of a scalar single parameter characterizing the

combined effects of both the effective potential function and

the mass dependence of the energy eigenvalues given small-

amplitude vibrational state. But this ratio, and the scale

chosen to display it, give exaggerated prominence to molecules

close to the linear limit, and bunches up the ‘‘more bent’’

species, including NCNCS, close together near the bent limit.

It is now clear that there are many molecules, previously

classified as bent, which have a monodromy point in the

energy range experimentally or astronomically accessible, as

in the case of water.

It would be convenient to be able to classify all of these

molecules more usefully. We can do this simply by generalizing

the original definition of the quasi-linearity parameter to a

characteristic function depending on the large amplitude

vibrational level,

g0ðvbÞ ¼ 1� 4
Eðvb;Ka ¼ 1Þ � Eðvb;Ka ¼ 0Þ

Eðvb þ 1;Ka ¼ 0Þ � Eðvb;Ka ¼ 0Þ

� �
: ð50Þ

The pair of energy intervals (here term values with J = Ka)

defining the original quasi-linearity parameter is now the first

member of a set, each pair defining a unit cell in the quantum

lattice energy-momentum map, or monodromy plot, of

E(Ka, vb) vs. Ka. Such unit cells, spanned by the two vectors

(DKa,Dvb) = (0,1) and (DKa,Dvb) = (1,0) are shown in Fig. 9

and discussed in ref. 2 and in more detail in ref. 14. If we move

this unit cell from the origin at Ka = vb = 0 to successively

higher values of vb with Ka = 0, and take the ratios of the two

intervals indicated by the two vectors, we obtain a succession

of ratios that can be scaled as in eqn (50) (i.e. in the same way

as the original g0
60), and plotted against the origin, Eorigin, of

the two vectors for a given vb. (It can also be plotted just using

vb as the ordinate.) In this way we obtain a curve such as that

in Fig. 18 for NCNCS. In a classical picture we could say that

the molecule traverses from a bent molecular geometry to a

linear molecular model upon excitation. The excitation term

values are taken from Tables 8–11. Four sample pairs of

intervals are indicated by their unit cells in Fig. 9b. The curve

in Fig. 18 crosses the diagram rapidly at the monodromy

point. A truly bent molecule, in contrast, will have a g0 value
close to +1.0 for bending energies as high as we can measure

or calculate.

The recently assigned spectroscopic data for highly excited

bending states of the water molecule are given in ref. 18. The

values of g0(vb) for the various bending states of water

calculated from the predictions of the BT2 line list, published

Fig. 15 In panel a the fitted potential energy of NCNCS as a function

of r is displayed as a solid black line, and the ab initio values are given

by the solid black circles connected by an interpolated curve. The

probability densities for vb, Ka = 0, as formulated for both polar and

Cartesian coordinates, are shown with the color coding of Fig. 2. The

squares of the conventional polar or radial wave-functions |cr|2 are

shown as solid lines and refer to the lower abscissa scale in r, while
those of Cartesian wave-functions |cc|

2 are shown as dashed lines and

refer to the upper abscissa scale in the displacement coordinate x

(see text). Panel b shows the dependence on r of the ab initio calculated

transition dipole moments ma and mb.
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with ref. 61, are plotted up to v2 = vb = 13 in Fig. 19. These

calculated energies differ from the highest of the experimental

values, those for v2 = vb = 9, by B1.0 cm�1, which is within

the pen-width of the plot. The transition from bent to linear

for NCNCS is imitated closely by the water molecule, showing

the generality of the effect of quantum monodromy. Molecules

like OCCCO and HCNO will have curves that look like

excerpts of the upper half of Fig. 18.

Fig. 16 Expectation values of the permanent electric dipole moment component ma (Panel a) and mb (Panel b) for NCNCS as a function of Ka and

arranged as quantum monodromy plots. Both sets of values were calculated from an ab initio potential function for the large amplitude bending

motion with a SRB Hamiltonian. Values for e-symmetry levels are plotted at Ka Z 0, while those for f-symmetry are plotted at Ka o 0.

The asymmetry splitting for low Ka values was averaged.

Fig. 17 Panel a: Expectation values of the quasi-linear bending coordinate r for NCNCS as a function of Ka and vb and Panel b: analogously for

r2, arranged as a quantum monodromy plot. Both sets of values were calculated with the GSRB Hamiltonian. Values for e-symmetry levels are

plotted at Ka Z 0, while those for f-symmetry are plotted at Ka o 0. The asymmetry splitting for low Ka values was averaged.
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6. Conclusions

As can be seen in Table 3 the current GSRB fitting produces

constants very much in agreement with the previously reported

results.8 This is true even though the fitted value for the CS

internuclear distance is 0.03 Å longer in the current work; this

simply offsets the 0.03 Å shorter CN and NC internuclear

distances used here. In the earlier work no ab initio values were

available and the fixed internuclear distances, including rCN,

were simply estimates. The potential energy functions are also

quite similar in the two fittings. We can now reasonably extend

the calculations to much higher J than the limit of J = 9 in

the earlier work. In the light of the above dipole moment

discussion a re-scaling of the experimentally observed

rotational line intensities becomes feasible and necessary for

the line search for the naturally occurring isotopologues.

An aspect of the current analysis that has not been explicitly

reported before is the fact that the Deff and Heff values also

contain information, which can be used, about the large-

amplitude bending motion and the monodromy point of the

potential function. The distinctive patterns due to large-

amplitude motion are visible at low Ka in Fig. 10 and 11.

The good agreement between experimental and GSRB+CD

values seen here speaks for the physicality of the GSRB+CD

model and how well monodromy is incorporated within it.

We have presented the NCNCS spectral patterns at great

length. This is not because we expect this molecule and its

dynamics to make an impact in important gas phase applica-

tions. Instead, we have done this because these patterns

underlie the energy level manifolds of all chain-form mole-

cules, including water. This will be particularly important in

those situations where the temperature is sufficient to excite a

significant population to levels at or above the monodromy

point. Although these patterns may not always be as obvious

as they are for NCNCS, where the lowest bending mode is

strongly decoupled from the other vibrational modes,

they should still help in conceptualizing these previously

unsuspected aspects of the structure and properties of the

energy level manifolds of these molecules.

Furthermore we have shown that almost every property of

the molecular energy levels is affected by quantum mono-

dromy. This includes the effective rotational spectroscopic

constants, Beff, Deff, and Heff (the monodromy effects on the

latter two examined for the first time) and the dipole transition

moments. In section 5.3 we showed that essentially any

molecular property that changes due to the large-amplitude

vibrational motion will exhibit such behaviour. That is, the

effects of monodromy are mapped into the wave function and

thus become ubiquitous.

6.1 Supplementary material

Tables submitted as electronic supplementary materialw with

this paper include:

Table 1. List of all 9204 assigned rotational transitions,

including assignment, position, intensity, estimated experi-

mental error (set large for observed perturbations), and

deviation from polynomial fit calculations made for each series

using the constants in Tables 5–7 of this paper.

Table 2. Predictions of series origins Eorigin = E(Ka, vb, J =

Ka,e/f), Beff, Deff, and Heff based on GSRB calculations up to

J= 20 and vb = 12, used for Fig. 9 thus extending beyond the

range included in Tables 8–11 of this paper.

Fig. 18 The quasi-linear characteristic g0(vb) values plotted as a

function of the bending-rotation term values of the manifold of the

quasi-linear bending mode of NCNCS. The data are given in Tables 8

through Table 11.

Fig. 19 The quasi-linear characteristic g0(vb) values for water have

been calculated from the term values available in ref. 18 and 61 and

their respective supplementary materials. The bending mode n2 for

water is replaced by nb in our present discussion.
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Table 3. Bending-rotation term values calculated for J r 20

and vb r 12 using the GSRB constants given in Table 3. Some

minor trends indicate lack of convergence for vb = 10 to 12,

but these values are included for completeness.

Acknowledgements

The authors thank Zbigniew Kisiel for commenting on the

manuscript. The experimental work at OSU is supported by

the Army Research Office. S. C. Ross acknowledges the

support of the Natural Sciences and Engineering Research

Council of Canada (NSERC) and very helpful discussions

with Dr K. M. T. Yamada.

References

1 B. P. Winnewisser, M. Winnewisser, I. R. Medvedev, M. Behnke,
F. C. De Lucia, S. C. Ross and J. Koput, Phys. Rev. Lett., 2005, 95,
243002.

2 M. Winnewisser, B. P. Winnewisser, I. R. Medvedev, F. C. De
Lucia, S. C. Ross and L. M. Bates, J. Mol. Struct., 2006, 798, 1.

3 H. M. Pickett, J. Mol. Spectrosc., 1991, 148, 371.
4 I. R. Medvedev, M. Winnewisser, B. P. Winnewisser, F. C. De
Lucia and E. Herbst, J. Mol. Struct., 2005, 742, 229.

5 M. A. King and H. W. Kroto, J. Chem. Soc., Chem. Commun.,
1980, 606.

6 H. W. Kroto, Molecular rotation spectra, Dover Publications, Inc.,
1992.

7 M. A. King, H. W. Kroto and B. M. Landsberg, J. Mol. Spectrosc.,
1985, 113, 1.

8 S. C. Ross, J. Mol. Spectrosc., 1988, 132, 48.
9 L. M. Bates, Z. Angew. Math. Phys., 1991, 42, 837.

10 R. Cushman and J. J. Duistermaat,Bull. Am.Math. Soc., 1988, 19, 475.
11 M. S. Child, T. Weston and J. Tennyson,Mol. Phys., 1999, 96, 371.
12 M. S. Child, J. Phys. A: Math. Gen., 1998, 31, 657.
13 M. S. Child, J. Mol. Spectrosc., 2001, 210, 157.
14 M. Child, Adv. Chem. Phys., 2007, 136, 39.
15 B. P. Winnewisser, Molecular Spectroscopy: Modern Research,

1985, vol. 3, ch. 6, p. 321.
16 W. Quapp and B. P. Winnewisser, J. Math. Chem., 1993, 14, 259.
17 R. Cushman and L. Bates, Global Aspects of Classical Integrable

Systems, Birkhäuser, 1997.
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