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Mathematics for Physics Students 
Introduction 
Ever since Newton, maths has been the language in which we do physics.  This is why we insist on A level maths 
for potential physics students.  However, we are only too aware that over the past year your schooling has 
been badly disrupted by the pandemic, and so you may not have had the chance to develop your mathematical 
skills as much as you would normally have done.  In this resource pack, we are offering you the chance to get 
some more practice in two aspects of maths that are particularly important for your first year physics course: 
vectors and calculus. 

This is not compulsory: we’re not going to set you a test on it in week 1 or anything like that.  But our 
experience is that one of the most difficult things to adapt to in first year physics is that maths and physics, 
which until now you have studied as separate subjects, need to be brought together to tackle university-level 
physics problems.  We hope that the material we cover here will help you to make this transition more 
smoothly. 

Topic 1: vectors 
What is a vector? 
A vector is a mathematical entity that has both magnitude and direction.  Many important variables in physics 
are vectors.  For example, momentum is a vector (it has magnitude and direction), whereas energy is a scalar 
(it has only magnitude).  In diagrams, we usually represent vectors by drawing an arrow representing the 
magnitude and direction of the vector. 

Question 1: which of the following physical quantities are vectors? 
(a) position;   (b) temperature;   (c) heat;   (d) magnetic field;   (e) force;   (f) acceleration. 

Vectors in component form 
Because a vector has both magnitude and direction, it requires more than one number to describe a vector.  
Most commonly, we express a vector using Cartesian coordinates.  We might 
write the vector on the right in a number of different forms: 

• 𝑎"̂ + 𝑏&̂ + 𝑐𝒌)	 
• 𝑎𝒙, + 𝑏𝒚, + 𝑐𝒛/ 
• (𝑎, 𝑏, 𝑐) 

• 3
𝑎
𝑏
𝑐
4 

All of these are equivalent, and different books use different conventions.  In the first two, "̂, &̂, 𝒌) and 𝒙,,𝒚,, 𝒛/  
represent unit vectors (that is, vectors of magnitude 1) oriented along the x, y and z axes respectively.  Most 
books use the circumflex or “hat”, ^, to indicate a unit vector. 

In equations, vectors are usually written in bold or bold italic.  In handwriting, one can either put a squiggly line 
under the symbol, v̰ (in the days before computer typesetting, this was an instruction to a printer to set the 
letter in bold), or an arrow above it, v⃗.  It is very important to distinguish vectors from scalars, because the 
vector p is different from its magnitude, p: 

𝒑 = �⃗� = 9𝑝:, 𝑝;, 𝑝<=; 			𝑝 = |𝒑| = @𝑝:A + 𝑝;A + 𝑝<A. 
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Question 2: write each of the following in the form (x, y, z), and calculate their magnitudes. 
(a) 𝒗𝟏 = −2&̂;   (b) 𝒗𝟐 = 3𝒛/;   (c) 𝒗𝟑 = "̂ + 2𝒌);   (d) 𝒗𝟒 = 6𝒙, − 2𝒚, + 5𝒛/;   (e) 𝒗𝟓 = 0.83"̂ + 0.89&̂ + 0.45𝒌). 

Note that what defines a vector is its magnitude and its direction, not 
its starting point.  We can move a vector around in space without 
changing it.  All of the blue arrows in the diagram on the right 
represent the same two-dimensional vector. 

We can also describe vectors in different coordinate systems.  The 
rule is that an n-dimensional vector always needs n numbers to 
describe it, but you have a choice of what those n numbers are.  We 
could describe the vector in this diagram by its x and y components 
as (1,2), but we could also describe it by its length 𝑟 = √5 and the 
angle it makes with the x-axis, 𝜃 = arctan(2) = 63.4∘.  Both 
descriptions are equivalent.  

For three dimensions, we need two angles.  In physics, these are 
defined as shown on the right1.  You should be able to see that the 
relationships between these angles and the coordinates (x,y,z) are 

𝑥 = 𝑟 sin 𝜃 cos 𝜑 ;	
𝑦 = 𝑟 sin 𝜃 sin𝜑 ;	
𝑧 = 𝑟 cos 𝜃. 

These spherical polar coordinates can be used to describe vectors or 
anything else that needs a three-dimensional label.  They are particularly 
useful in dealing with systems with spherical symmetry. 

Question 3: calculate r, θ and φ for the vectors in question 2. 
 

Addition and subtraction of vectors 
To add or subtract vectors, we simply add or subtract their components: 

9𝑎:, 𝑎;, 𝑎<= + 9𝑏:, 𝑏;, 𝑏<= = 9𝑎: + 𝑏:, 𝑎; + 𝑏;, 𝑎< + 𝑏<=. 
This is obvious if we write the vectors in the form 𝑎:"̂ + 𝑎;&̂ + 𝑎<𝒌): this is already a sum, and when we add on 
𝑏:"̂ + 𝑏;&̂ + 𝑏<𝒌) all we have to do is rearrange the terms of the sum to get (𝑎: + 𝑏:)"̂ + 9𝑎; + 𝑏;=&̂ +
(𝑎< + 𝑏<)𝒌). 

The usual rules of addition apply: 
𝒂 + 𝒃 = 𝒃 + 𝒂;	

𝒂 + (𝒃 + 𝒄) = (𝒂 + 𝒃) + 𝒄. 
We can think of subtraction as a special case of addition:  

𝒂− 𝒃 = 𝒂 + (−𝒃),	
where the vector –b has the same magnitude as b, but opposite direction (in component form, multiply all 
components by −1). 

Question 4: For each of the following pairs of vectors a, b, calculate a + b and a – b. 
(a) a = (5,4,9), b = (5,2,3) 
(b) a = (−3,7,6), b = (6,−2,−6) 
                                                             
1 In maths textbooks, you will sometimes find that the angle labelled 𝜃 here is labelled 𝜑 and vice versa.  This is more 
logical, because it means that the angle called θ is the same angle that is called θ when working in two dimensions.  But in 
physics the system shown in the diagram is always used, as specified in ISO standard 80000-2: 2019. 
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(c) a = (−9,3,0), b = (−3,−7,8) 
(d) a = (0.209,−0.638,−0.053), b = (0.284,0.912,0.281) 

Multiplication by scalars 
Any vector can be multiplied by a scalar.  This multiplies the length of the vector by the scalar, but does not 
change its direction.  In component form, we multiply each component by the scalar: for example, a velocity 
vector (𝑣:, 𝑣;, 𝑣<) can be converted into a momentum vector (assuming 𝑣 ≪ 𝑐) by multiplying by mass, which 
is a scalar: 𝒑 = 𝑚𝒗 = (𝑚𝑣:,𝑚𝑣;,𝑚𝑣<). 

Question 5: A spacecraft of mass 450 kg travelling at velocity (−63,89,−16) m/s collides with another 
craft of mass 800 kg travelling at velocity (−94,24,57) m/s.  After the collision the wreckage all sticks 
together.  What is its final momentum?  What is its final velocity? 
 
Incidentally, there are also ways of multiplying vectors by vectors.  You have not met these in your A-level 
maths course (unless you did Further Maths), but you will meet them in your first year at university, because 
they have important applications in physics. 

Differentiation and integration of vectors with respect to scalars 
We can generalise the idea that vectors can be multiplied or divided by scalars to differentiation and 
integration with respect to scalars.  If we consider a vector in its component form, 𝒗 = (𝑣:, 𝑣;, 𝑣<), its 
derivative with respect to a scalar t is simply 

d𝒗
d𝑡

= 3
d𝑣:
d𝑡

,
d𝑣;
d𝑡

,
d𝑣<
d𝑡
4. 

It follows from the Fundamental Theorem of Calculus that integration of a vector with respect to a scalar works 
in the same way. 

Example: An object is in a circular orbit around the Earth.  Its velocity is V = (V0 cos ωt, V0 sin ωt, 0).  
What are (a) its position, (b) its acceleration, and (c) the magnitude of its acceleration, as a function of 
t?  At time t = 0, the position of the object is r0 = (0, −V0/ω, 0).  
To answer this question we use the basic facts that velocity is the rate of change of position, 𝒗 = d𝒓/d𝑡, and 
acceleration is the rate of change of velocity, 𝒂 = d𝒗/d𝑡.  Therefore, for our satellite, 

𝒓 = lm𝑉o cos𝜔𝑡 d𝑡 ,m𝑉o sin𝜔𝑡 d𝑡 ,m 0	d𝑡q	

= l
𝑉o
𝜔
sin𝜔𝑡 + 𝐶:,−

𝑉o
𝜔
cos𝜔𝑡 + 𝐶;, 𝐶<q. 

To evaluate the constants of integration we note that at t	=	0 

𝒓o = l0, −
𝑉o
𝜔
, 0q = l𝐶:,−

𝑉o
𝜔
+ 𝐶;, 𝐶<q 

and thus all the constants must be zero. (This is an example of using a boundary condition to evaluate an 
integration constant—see page 10.)  

This gives us 

𝒓 =
𝑉o
𝜔
(sin𝜔𝑡 ,− cos𝜔𝑡 , 0). 

Note that the magnitude of r is st
u
(sinA𝜔𝑡 + cosA 𝜔𝑡)v/A = st

u
, which is constant, as we would expect for 

circular motion. 

For the acceleration 
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𝒂 = l
d
d𝑡
(𝑉o cos 𝜔𝑡),

d
d𝑡
(𝑉o sin𝜔𝑡), 0q	

= (−𝜔𝑉o sin𝜔𝑡 , 𝜔𝑉o cos𝜔𝑡 , 0)	
= 𝜔𝑉o(−sin𝜔𝑡 , cos 𝜔𝑡 , 0). 

Note that 𝒂 = −𝜔A𝒓.  The magnitude of the acceleration is 

𝑎 = @𝜔A𝑉oA(sinA 𝜔𝑡 + cosA 𝜔𝑡) = 𝜔𝑉o. 

Again, this is independent of time.  If we compare it with r, we see that 𝑎 = 𝑉oA/𝑟.  You may recognise this as 
the standard expression for acceleration in uniform circular motion. 

This is a classic example of how you will apply calculus to physics problems in your university studies.  By using 
differentiation and integration to relate position, velocity and acceleration, we can apply the laws of motion to 
situations where the acceleration is not constant, thereby greatly increasing our ability to analyse a range of 
different physical systems. 

Problems for vectors 
Here are some practice problems you might like to try.  We’ll distribute the solutions in Intro Week. 

1. Sheffield has latitude 53.4°N and longitude 1.5°W.  Define a coordinate system such that the z axis 
points from the centre of the Earth to the North Pole, the x axis points from the centre of the Earth to 
the equator at the Greenwich meridian (i.e. longitude 0°), and the y axis points from the centre of the 
Earth to the equator at longitude 90°E.  Using this coordinate system, and assuming that the Earth is a 
sphere of radius 6370 km, calculate the position vector of Sheffield in the form (𝑥, 𝑦, 𝑧).  [Hint: 
remember that latitude is measured north and south from the equator, whereas the θ coordinate in 
spherical polar coordinates is measured from the positive z axis, so in this case southwards from the 
North Pole.] 

2. A car travelling at speed V enters the right-angled bend 
shown on the right.  The bend is a 90° arc of a circle of 
radius R.  Expressed in component form, what is 

a. the velocity of the car before entering the bend; 

b. the velocity of the car after exiting the bend; 

c. the velocity of the car at point X, when it has 
turned through angle θ as shown; 

d. the acceleration of the car at point X? 

Assume that the car maintains a constant speed V 
throughout, and that the road is completely level (i.e. the 
z components of velocity and acceleration are zero throughout). 

e. By integrating the acceleration from 𝜃 = 0∘ to 𝜃 = 90∘, calculate the change in the car’s 
velocity as a result of negotiating the bend.  Check that this is consistent with your answers to 
parts a and b. 

x 

y 

θ	
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3. A spacecraft heading to Mars has mass 650 kg and velocity (−20.8, −12.0,0.7) km/s in some 
appropriate coordinate system.  In a mid-course correction, the spacecraft fires its rocket engine, 
delivering an impulse (130,−455,−520) kN·s.  What is the velocity vector of the spacecraft after the 
mid-course correction? 

4. A conical pendulum is a pendulum whose bob 
describes a circle, as shown on the right.  The z and x 
axes are defined as shown, and the y axis is directed 
into the page (so the bob is moving in the direction of 
increasing 𝜑).  The bob moves at a constant speed V. 

a. At time t = 0 the position of the bob is 
(−𝑟, 0,0) as shown in the diagram.  In terms of 
r and 𝜑, what is the position of the bob at 
time t, when it has rotated through an angle 
𝜑 = 𝜔𝑡 (where 𝜔 = d𝜑/d𝑡, and is constant)?  

b. What is the velocity of the bob at time t, in 
terms of r and 𝜑? 

c. What is the acceleration of the bob at time t? 

d. Verify that the magnitude of the acceleration 
is constant.  Also check that your answers to parts a and c are consistent with the relation 𝒂 =
−𝜔A𝒓. 

e. By solving the force diagram shown above, show that for small angles θ the period P of the 
conical pendulum (defined as the time the bob takes to complete a full circle, so 𝑃 = 2𝜋𝑟/𝑉) is 
given by 𝑃 ≃ 2𝜋|𝐿/𝑔, exactly the same as an ordinary pendulum of the same length.  (This 
isn’t a vector problem!)  

5. Coulomb’s law can be written in vector form as  

𝑭 =
𝑄v𝑄A
4𝜋𝜖o𝑟A

𝒓/,	

where, if we are calculating the force on Q2, r is the vector running from Q1 to Q2 and 𝒓/ = 𝒓/|𝒓| is the 
unit vector in the direction of r.  (If we are calculating the force on Q1, r runs in the opposite direction, 
from Q2 to Q1.) 

a. We fix two charges +Q and −2Q to a flat table at 
positions (0,1) and (3,0) as shown.  We then place 
another charge –q on the table at position (1,2).  
The charge –q is free to slide around the table.  
Assuming negligible friction, in what direction will 
the charge –q start to slide?  Express your answer 
as a unit vector. 

b. In what direction will the charge –q start to slide if we replace the fixed charge −2Q by a charge 
+2Q in the same location? 

c. In case b, where both fixed charges are positive, is there anywhere on the table where we 
could place charge –q and it would not start to slide if released?  If so, what are the coordinates 
of that position? 

z	

x	

+Q 

−2Q 

−q 
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Topic 2: Calculus 
Why is calculus important? 
Calculus is one of the most important tools in physics.  It was his invention of calculus that allowed Isaac 
Newton to develop his laws of motion and of gravity, which in many respects were the beginning of modern 
physics.  The main reason for this is that calculus enables us to deal effectively with change. 

Much of physics is about change.  Velocity is the rate of change of position, and acceleration is the rate of 
change of velocity.  The applied force is equal to the rate of change of momentum.  Differentiation is a 
technique for measuring instantaneous rates of change, so we do not have to restrict ourselves to situations 
where the rate of change is constant over long periods (e.g. constant acceleration).  Conversely, integration 
allows us to calculate the cumulative effect of change, even when the rate of change has varied over the period 
of interest.   

The ideas of differentiation and integration 
Integration is generally acknowledged to be a more 
difficult problem than differentiation (see right), but it 
is conceptually simpler and was more frequently 
anticipated by ancient mathematicians.  Integration 
consists, in essence, of adding up lots of small 
quantities to obtain the value of something that is 
hard to calculate directly.  For example, one might 
imagine calculating the volume of a cone by slicing it 
into numerous thin discs.  The volume of each disc can 
be approximated by 𝜋𝑟Adℎ, where r is the radius of 
the disc and dh is its (small) thickness, and we can find 
the volume of the cone by adding up all the disc 
volumes.  Calculations similar to this were done by the 
ancient Greek mathematician Archimedes in the 3rd 
century BCE, but he did not have a general method—
he produced a different construction for every area or volume he calculated using this method of splitting into 
smaller pieces—and, crucially, he always regarded his small pieces as finite.  The Greeks did not develop the 
concept of a limit, so Archimedes’ sums never quite became true integrals.  

In modern calculus, the simplest visualisation of 
differentiation and integration is that the integral of a 
function 𝑓(𝑥) is the area under the curve, and the 
derivative of 𝑓(𝑥) is the gradient of the line tangent to 
the curve.  An example of this is shown on the right: the 
histogram is an approximation to the area under the 
curve, and will become the area under the curve if we 
shrink the histogram bin widths towards zero, while the 
dotted line is the tangent to the curve at the point x = 4, 
and represents the derivative of the function at x = 4.  

Note that the area dA of the bar at x is given by d𝐴 = 𝑓(𝑥)d𝑥, which can be rearranged to d𝐴/d𝑥 = 𝑓(𝑥).  
Thus, if A(x) is the area under the curve measured between some reference value (say 0) and x, we have 

𝐴(𝑥) = m 𝑓(𝑥)d𝑥
:

o
;							

d𝐴
d𝑥

= 𝑓(𝑥). 

This relationship between differentiation and integration is known as the Fundamental Theorem of Calculus. 

Randall Munroe, 
https://xkcd.com/
2117/ 
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Differentiation 
The derivative of a function 𝑓(𝑥) is defined by 

d𝑓
d𝑥

= lim
�:→o	

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

. 

For finite Δ𝑥, this is the mean gradient of the function between x and x	+	Δx, so we think of the derivative as 
the gradient of the function at the point x (or as the gradient of a line which is tangent to the function at point 
x). 

Example: the derivative of x4 

Using the definition of the derivative, we can write  
(𝑥 + Δ𝑥)� − 𝑥�

Δ𝑥
=

1
Δ𝑥
(𝑥� + 4𝑥�Δ𝑥 + 6𝑥A(Δ𝑥)A + 4𝑥(Δ𝑥)� + (Δx)� − 𝑥�) = 4𝑥� + 6𝑥AΔ𝑥 + 4𝑥(Δ𝑥)A, 

and when we let Δ𝑥 → 0 this will clearly give us d(𝑥�)/d𝑥 = 4𝑥�.  In fact, since 

(𝑥 + Δ𝑥)� = 𝑥� + 𝑛𝑥��vΔ𝑥 +
1
2
𝑛(𝑛 − 1)𝑥��A(Δ𝑥)A + ⋯+ (Δ𝑥)�, 

we can easily see that the general rule must be  
d
d𝑥
(𝑥�) = 𝑛𝑥��v. 

All derivatives can in principle be evaluated explicitly from the definition, as in this example.  However, in 
practice we use standard rules, such as the one we just derived for 𝑥� . 

Differentiation of more complicated functions 
Many functions that arise in physics are more complicated than simple power laws or trigonometric functions.  
It’s not reasonable to tabulate the derivatives of every function you could possibly meet: instead, we develop 
rules for obtaining the derivatives of more complicated functions from simpler basic functions that we can 
reasonably tabulate (and learn). 

The three basic ways in which we can combine functions are: 

1. Addition: 𝑓(𝑥) = 𝑢(𝑥) + 𝑣(𝑥). 
2. Multiplication: 𝑓(𝑥) = 𝑢(𝑥)𝑣(𝑥). 
3. Composition: 𝑓(𝑥) = 𝑓9𝑢(𝑥)=. 

Division can be seen as a combination of composition and multiplication: if we have 𝑓(𝑥) = 𝑢(𝑥)/𝑣(𝑥), we can 
define 𝑤(𝑥) = 1/𝑣(𝑥) (a composition: we’re writing 𝑤 = 1/𝑣 where v happens to be a function of x) and then 
write 𝑓(𝑥) = 𝑢(𝑥)𝑤(𝑥) (a product). 

Differentiating a sum 
The derivative of a sum follows easily from the definition of the derivative.  If 𝑓(𝑥) = 𝑢(𝑥) + 𝑣(𝑥), it follows 
that 𝑓(𝑥 + Δ𝑥) = 𝑢(𝑥 + Δ𝑥) + 𝑣(𝑥 + Δ𝑥), and so 

d𝑓
d𝑥

= lim
�:→o

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

	

= lim
�:→o

𝑢(𝑥 + Δ𝑥) + 𝑣(𝑥 + Δ𝑥) − 𝑢(𝑥) − 𝑣(𝑥)
Δ𝑥

	

= lim
�:→o

�
𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥)

Δ𝑥
+
𝑣(𝑥 + Δ𝑥) − 𝑣(𝑥)

Δ𝑥
� =

d𝑢
d𝑥

+
d𝑣
d𝑥
. 

In other words, the derivative of the sum is the sum of the derivatives. 
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Differentiating a product 
The product rule also follows fairly naturally from the definition of the derivative.  From the definition, we 
know that 

𝑢(𝑥 + Δ𝑥) = 𝑢(𝑥) + 𝑢�(𝑥)Δ𝑥 + 𝒪(Δ𝑥A), 
where 𝑢�(𝑥) = d𝑢/d𝑥 and 𝒪(Δ𝑥A) (i.e. “terms of order Δ𝑥A”) stands for any terms that include squares or 
higher powers of Δ𝑥 and will therefore go to zero when we take the limit Δ𝑥 → 0.  It follows that 

𝑢(𝑥 + Δ𝑥) ⋅ 𝑣(𝑥 + Δ𝑥) = 𝑢(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣�(𝑥)Δ𝑥 + 𝑢�(𝑥)Δ𝑥 ⋅ 𝑣(𝑥) + 𝒪(Δ𝑥A), 
and therefore 

d
d𝑥
(𝑢𝑣) = lim

�:→o

𝑢(𝑥 + Δ𝑥)𝑣(𝑥 + Δ𝑥) − 𝑢(𝑥)𝑣(𝑥)
Δ𝑥

= 𝑢(𝑥)𝑣�(𝑥) + 𝑢�(𝑥)𝑣(𝑥). 

This is just the standard product rule, (𝑢𝑣)� = 𝑢𝑣� + 𝑢′𝑣. 

Differentiating a composite function (the chain rule) 
If a function is composite, 𝑓(𝑥) = 𝑢9𝑣(𝑥)=, we can calculate the derivative using a series of steps: 

1. Make a small change Δx in x. 
2. Compute the resulting small change in u, Δ𝑢 = 𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥). 
3. Compute the resulting small change in f, Δ𝑓 = 𝑓(𝑢 + Δ𝑢) − 𝑓(𝑢). 
4. Take the limit of Δ𝑓/Δ𝑥 as Δ𝑥 → 0 (note that for any well-behaved function u, this also implies Δ𝑢 →

0). 

Before we take the limit, we can write 
Δ𝑓
Δ𝑥

=
Δ𝑓
Δ𝑢

Δ𝑢
Δ𝑥
. 

From the definitions, 

lim
��→o

Δ𝑓
Δ𝑢

=
d𝑓
d𝑢

						and						 lim
�:→o

Δ𝑢
Δ𝑥

=
d𝑢
d𝑥
. 

It follows that 
d𝑓
d𝑥

= lim
�:,��→o

Δ𝑓
Δ𝑥

=
d𝑓
d𝑢

d𝑢
d𝑥
	. 

This is the chain rule.  It is one of the most commonly applied mathematical tools in physics, so it is essential 
that you understand this rule and can use it quickly and accurately. 

Example: Use the product rule and the chain rule to derive the quotient rule. 
Consider 𝑓(𝑥) = 𝑢(𝑥)/𝑣(𝑥).  Define 𝑤(𝑥) = 1/𝑣(𝑥).  Then by the chain rule 

d𝑤
d𝑥

=
d𝑤
d𝑣

d𝑣
d𝑥

= −
1
𝑣A
𝑣�(𝑥). 

From the definition of w, 𝑓(𝑥) = 𝑢(𝑥)𝑤(𝑥), so we can use the product rule to write 
d𝑓
d𝑥

= 𝑢
d𝑤
d𝑥

+𝑤
d𝑢
d𝑥

= −
1
𝑣A
𝑢𝑣� +

𝑢�

𝑣
=
𝑢�𝑣 − 𝑢𝑣�

𝑣A
, 

which is the standard form of the quotient rule. 

Higher derivatives 
The derivative of a function is another function, so we can also take the derivative of that.  This is known as the 
second derivative, and denoted dA𝑓/d𝑥A.  This should not, of course, be confused with the square of the 
derivative, (d𝑓/d𝑥)A.  It is possible to extend this indefinitely (or at least up to the point where the derivative is 
identically zero), but in physics we aren’t usually interested in much beyond the second derivative. 
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Example: A car’s position after time t is given by s = bt2 – ct3.  What is its acceleration? 
We know that velocity is the rate of change of position, 𝑣 = d𝑠/d𝑡, and acceleration is the rate of change of 
velocity, 𝑎 = d𝑣/d𝑡.  Therefore 𝑎 = dA𝑠/d𝑡A.  Differentiating twice, we find 𝑣 = 2𝑏𝑡 − 3𝑐𝑡A , and therefore 
𝑎 = 2𝑏 − 6𝑐𝑡. 

Maxima and minima 
An important application of differentiation is finding maxima and minima of a function.  If the derivative of a 
function f(x) is zero at some point x0, then the curve of the function is horizontal at that point.  This implies one 
of three possibilities: 

• f(x) has a maximum at that point (the gradient of the function has been positive but decreasing, is now 
zero, and will subsequently be negative); 

• f(x) has a minimum at that point (the gradient of the function has been negative but increasing, is now 
zero, and will subsequently be positive); 

• this is a point of inflection for f(x) (the gradient is zero at x0, but has the same sign (either positive or 
negative) either side of x0).  

Which case applies can usually be found by taking the second derivative, 𝑓��(𝑥) = dA𝑓/d𝑥A: 

• if 𝑓��(𝑥) < 0 (i.e. 𝑓′(𝑥) is decreasing), x0 is a maximum of 𝑓(𝑥); 
• if 𝑓��(𝑥) > 0 (i.e. 𝑓′(𝑥) is increasing), x0 is a minimum of 𝑓(𝑥); 
• if 𝑓��(𝑥) = 0, x0 is usually, but not always, a point of inflection.  This needs checking, since 𝑓��(𝑥) = 0 is 

a necessary but not sufficient condition for an inflection point (i.e. all inflection points have 𝑓��(𝑥) = 0, 
but not all points with 𝑓��(𝑥) = 0 are inflection points).  For example, if 𝑓(𝑥) = 𝑥�, then 𝑓�(𝑥) = 4𝑥�, 
which is zero at 𝑥 = 0.  The second derivative 𝑓��(𝑥) = 12𝑥A, which is also zero at 𝑥 = 0, but this is a 
minimum, not an inflection point. 

It is worth noting that the definition of an inflection point is that it is a point at which the curvature of the 
function changes sign: the function goes from concave up to concave down or vice versa.  Therefore, inflection 
points can occur when 𝑓�(𝑥) ≠ 0: for example, sin 𝑥 has inflection points at 0, π, 2π, … 

Problems for differentiation  
Here are some practice problems you might like to try.  We’ll distribute the solutions in Intro Week. 

1. Differentiate the following with respect to x (all other symbols are constants): 
a.  𝑥�   b.  4/𝑥   c.  𝑥� − 𝑥v/�   d.  sin(2𝑥)   e.  𝑒�A:   f.  3:    g.  ln(5𝑥)   h.  𝑎𝑥A + 𝑏𝑥 + 𝑐. 

2. Differentiate the following with respect to t (all other symbols are constants): 
a.  sin(𝑎𝑡A)   b.  √𝑎𝑡� + 𝑏𝑡A   c.  𝑡A cos(2𝑡)   d.  𝑒� ¡¢£    e.  (𝑎𝑡 + 𝑏)    f.  𝐴 sin(𝜔𝑡 − 𝑘𝑥) 

3. Differentiate the following with respect to x (all other symbols are constants): 

a.  3𝑥	cos	(2𝑥A + 𝜙)   b.  𝑥𝑒�:   c.  ¦ §¨©(ª:)
:

   d.  :
�:¡¢£

   e.  1/ cos(𝑥A)   f.  𝑥 ln(𝑥A) 

4. Find the maxima and minima of the functions: 
a.  4𝑥A − 3𝑥 + 2   b.  sin(3𝑥A − 5𝑥 + 2) (in the range 0 ≤ 𝑥 ≤ 𝜋)  c.  𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡)    
d.  𝐴𝑥A − 𝐵/𝑥�   e.  6𝑥� − 3𝑥A + 4   f.  (𝑥A − 3𝑥 + 2)𝑒:  

5. An important function in statistics is 𝑓(𝑥) = 𝑒�:¡/A.  Find the first and second derivatives of 𝑓(𝑥).  
Hence find the inflection points of 𝑓(𝑥). 
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6. A damped harmonic oscillator is an oscillator 
whose amplitude decreases with time, such as a 
pendulum with non-negligible friction in the pivot.  
The equation for the displacement of an object 
undergoing damped harmonic oscillation is  

𝑥 = 𝐴	𝑒�  cos(𝜔𝑡) , 
where A, α and ω are constants and we assume 
that 𝑥 = 𝐴 at 𝑡 = 0, as shown in the plot.   

a. Find the acceleration of the object at time t. 

b. In the plot, A = 2.0 m, α = 0.3 s−1, and ω = 
3.0 s−1.  Find the first three times t at which the velocity is zero, and check that these 
correspond to times at which the position is a maximum or a minimum. 

Integration 
By the Fundamental Theorem of Calculus, integration is the inverse of differentiation.  This means that it 
applies to the same sort of physics problems as differentiation does, but with different unknowns: if we know 
the position of an object as a function of time, we can use differentiation to find its velocity and acceleration, 
while if we know the acceleration, we can use integration to find the velocity and position.  Integration can also 
be used to find physical quantities such as the mass or volume of an object, and—perhaps less obviously—the 
average of some quantity. 

Definite and indefinite integrals 
If we think of integration as the inverse of differentiation—that is, the integral of 𝑓(𝑥)d𝑥 is some function 𝐹(𝑥) 
whose derivative is 𝑓(𝑥)—it is apparent that 𝐹(𝑥) is not completely defined.  Because the derivative of a 
constant is 0, we can add any constant to 𝐹(𝑥) without 
changing its derivative: the three curves in the figure 
have the same derivative at any point (the three dotted 
tangent lines have the same gradient).  This constant 
of integration can be eliminated in two ways: 

1. If we know the value of the integral at any 
point, we can explicitly evaluate the constant.  
For example, ∫cos 𝜃 	d𝜃 = sin 𝜃 + 𝐶, but if 
we know that the integral is 0 at 𝜃 = 𝜋/2, we 
can establish that 𝐶 = 0 − sin(𝜋/2) = −1.  
This is known as a boundary condition for the integral.   See page 3 for an example of this. 

2. If we are evaluating the integral between two specified limits, the constant will cancel out: for 

example, ∫ cos 𝜃 	d𝜃°/A
o = [sin 𝜃 + 𝐶]o

°/A = 1 independent of the value of C.  An integral evaluated 
between two limits is called a definite integral, and in this case we generally don’t bother to include 
the constant, because it will always cancel.  An integral without limits is an indefinite integral, and in 
this case we do need the constant. 

In physics problems, it is often the case that one or both of the limits of integration is infinite.  This is not 
technically legitimate, since infinity is not a real number, and such integrals are known as improper integrals.  
However, they can often be evaluated quite sensibly, and yield finite answers.  Formally, what we need to do is 
integrate to some finite limit, say t, and then allow t to tend to infinity, for example 

m 𝑒�:	d𝑥
³

o
= lim

 →³
m 𝑒�:	d𝑥
 

o
= lim

 →³
[−𝑒�:]o  = lim

 →³
[1 − 𝑒� ] = 1. 
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Physicists, however, are typically sloppy about such things and would simply write  

m 𝑒�:	d𝑥
³

o
= [−𝑒�:]o³ = 1. 

It is, of course, entirely possible that taking the limit as 𝑡 → ∞ does not yield a nice finite number (consider 
replacing 𝑒�:  with 𝑒¢: in the above example).  This can also happen with finite limits: for example, 

m
d𝑥
𝑥A

v

o
= µ−

1
𝑥
¶
o

v

, 

and clearly we have a problem at the lower limit.  Such integrals are said to be divergent.  In physics problems, 
if you have wound up with a divergent integral (and there was no clue in the question to suggest that all might 
not be well, such as “Why does your answer indicate a problem with this approximation?”), the chances are 
that you have set the problem up incorrectly. 

Integration techniques 
Differentiation is relatively straightforward: repeated applications of the chain rule and the product rule will 
produce the desired result (provided the function is differentiable in the first place), and it is generally clear 
which rule needs to be applied where.  The techniques used for integration are essentially the inverse of the 
differentiation rules (substitution is the chain rule run backwards, and integration by parts is the product rule 
run backwards), but it tends to be more difficult to identify which rule needs to be applied to a particular 
integral, and if we need repeated applications it can get very messy. 

Substitution 
Substitution is the inverse of the chain rule.  The chain rule states that  

d
d𝑥
·𝐹9𝑢(𝑥)=¸ =

d𝐹
d𝑢

d𝑢
d𝑥
. 

Integrating this gives 

𝐹9𝑢(𝑥)= = m
d𝐹
d𝑢

d𝑢
d𝑥
	d𝑥 = m

d𝐹
d𝑢

	d𝑢. 

What this says is that if we have a function that can be expressed in the form 

𝑓(𝑥) =
d𝐹9𝑢(𝑥)=

d𝑢
d𝑢
d𝑥
, 

we can find the integral with respect to x by doing the easier integral with respect to u. 

Example: Evaluate ∫𝑥𝑒�:¡	d𝑥. 

We can see here that 𝑥 = v
A
¹9:¡=
¹:

 .  Therefore if we write 𝑢 = 𝑥A, we have d𝑢 = 2𝑥	d𝑥.  Substituting into the 
equation gives 

m𝑥𝑒�:¡	d𝑥 =
1
2
m𝑒��	d𝑢 = −

1
2
𝑒�� + 𝐶 = −

1
2
𝑒�:¡ + 𝐶. 

The key challenge in using substitution is identifying the right choice for u.  The best way to do this is to identify 
the “inner function”, i.e. the function that is acting as the argument of another function, such as 𝑥A in the 
above example, 3𝑥 + 5 in sin(3𝑥 + 5) or √3𝑥 + 5, cos 𝑥 in cosº 𝑥, and see if you can identify its derivative 
elsewhere in the integrand.  There are some simple cases that are worth looking for: 

• If the inner function has the form 𝑎𝑥 + 𝑏, then its derivative with respect to x is just a constant.  In this 
case it is always worth trying 𝑢 = 𝑎𝑥 + 𝑏.  For example,  

m√3𝑥 + 5	d𝑥 =
1
3
m√𝑢 	d𝑢 =

1
3
µ
2
3
𝑢�/A + 𝐶¶ =

2
9
(3𝑥 + 5)�/A + 𝐶. 
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• If the integral is an odd power of cos 𝑥 (or sin𝑥), writing 𝑢 = sin 𝑥 (or 𝑢 = cos 𝑥) will work, because 
you can use cosA 𝑥 + sinA 𝑥 = 1 to convert any even power of cos 𝑥 into a polynomial in sin 𝑥 or vice 
versa.  For example, 

mcosº 𝑥 	d𝑥 = m(1 − sinA 𝑥)A cos 𝑥 	d𝑥 ,	

and if we write 𝑢 = sin 𝑥, d𝑢 = cos 𝑥 	d𝑥, this becomes 

m(1 − 𝑢A)A	d𝑢 = m(1 − 2𝑢A + 𝑢�)d𝑢 = 𝑢 −
2
3
𝑢� +

1
5
𝑢º + 𝐶, 

and you can substitute back to get this in terms of sin𝑥. 
• Integrals of the form	

m
d𝑥

√𝑎 − 𝑏𝑥A
, 

which show up surprisingly often in physics problems, can also be dealt with using cosA 𝑥 + sinA 𝑥 = 1.  
If we write sin 𝑢 = 𝑥|𝑏/𝑎, we have d𝑥 = |𝑎/𝑏 cos 𝑢 	d𝑢 and √𝑎 − 𝑏𝑥A = √𝑎 − 𝑎 sinA 𝑢 = √𝑎 cos𝑢.  
This gives us 

m
d𝑥

√𝑎 − 𝑏𝑥A
= m

|𝑎/𝑏 cos 𝑢 d𝑢
√𝑎 cos𝑢

=
1
√𝑏

md𝑢 =
𝑢
√𝑏

+ 𝐶. 

Substituting back for u gives us 

m
d𝑥

√𝑎 − 𝑏𝑥A
=

1
√𝑏

arcsin9𝑥|𝑏/𝑎= + 𝐶 

(using arcsin 𝑥 rather than sin�v 𝑥 to avoid any possible confusion with 1/ sin𝑥). 
• A similar trick can be played for integrals of the form 

m
d𝑥

𝑎 + 𝑏𝑥A
, 

using the closely related trig identity 1 + tanA 𝑥 = secA 𝑥. 

Choosing the right substitution is an art form!  There is no shortcut to developing your skills in this area: you 
just have to do lots of practice problems.  Your ability to solve them will grow with experience. 

Example: Evaluate ∫ �:¢º:¡¢¼
	d𝑥. 

This looks like a case where a substitution is probably necessary, but it is not obvious what to do.  The 
derivative of 𝑥A + 7 is not equal to a multiple of 3𝑥 + 5, so the obvious approach won’t work.  In fact, what we 
need to do is split it into two integrals and use a different substitution in each case.  We have 

m
3𝑥 + 5
𝑥A + 7

	d𝑥 = m
3𝑥

𝑥A + 7
	d𝑥 +m

5
𝑥A + 7

	d𝑥. 

The first of these we can do by letting 𝑢 = 𝑥A + 7; d𝑢 = 2𝑥d𝑥.  Then 

m
3𝑥

𝑥A + 7
	d𝑥 =

3
2
m
d𝑢
𝑢
=
3
2
ln 𝑢 + 𝐶. 

The second integral can be written as  
5
7
m

d𝑥
1 + 𝑥A/7

	. 

If we write 𝑥 = √7 tan𝜃, then d𝑥 = √7 secA 𝜃 	d𝜃 and 1 + 𝑥A/7 = 1 + tanA 𝜃 = secA 𝜃.  With these 
substitutions, we have 

5
7
m

d𝑥
1 + 𝑥A/7

	 =
5
√7

m
secA 𝜃 d𝜃
secA 𝜃

=
5
√7

md𝜃 =
5
√7

𝜃 + 𝐶. 

We now add these together to get   �
A
ln(𝑥A + 7) + º

√¼
arctan · :

√¼
¸ + 𝐶. 
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Integration by parts 
Integration by parts is the inverse of the product rule.  The product rule says 

(𝑢𝑣)� = 𝑢𝑣� + 𝑢�𝑣. 
If we integrate both sides of this we get 

𝑢𝑣 = m𝑢
d𝑣
d𝑥
d𝑥 + m

d𝑢
d𝑥
𝑣	d𝑥 + 𝐶. 

This can be rearranged to give 

m𝑢
d𝑣
d𝑥
d𝑥 = 𝑢𝑣 − m

d𝑢
d𝑥
𝑣	d𝑥 + 𝐶, 

which is sometimes written as 

m𝑢	d𝑣 = 𝑢𝑣 −m𝑣	d𝑢 + 𝐶. 

This is particularly useful when u is some power of x, because differentiating u with respect to x will eventually 
make that term disappear altogether. 

Example: Evaluate ∫ 𝑥A𝑒�ª:	d𝑥. 
We put 𝑢 = 𝑥A, so d𝑢/d𝑥 = 2𝑥, and d𝑣 d𝑥⁄ = 𝑒�ª: , so 𝑣 = −𝑒�ª:/𝑘.  Then we have 

m𝑥A𝑒�ª:	d𝑥 = −
𝑥A𝑒�ª:

𝑘
+
2
𝑘
m𝑥𝑒�ª:	d𝑥. 

Repeating the process, we put 𝑢 = 𝑥, so d𝑢/d𝑥 = 1, and d𝑣 d𝑥⁄ = 𝑒�ª:  again.  This gives 

m𝑥𝑒�ª:	d𝑥 = −
𝑥𝑒�ª:

𝑘
+
1
𝑘
m𝑒�ª:	d𝑥 = −

𝑥𝑒�ª:

𝑘
−
1
𝑘A
𝑒�ª:. 

Substituting this into our previous expression gives 

m𝑥A𝑒�ª:	d𝑥 = −
𝑥A𝑒�ª:

𝑘
−
2𝑥𝑒�ª:

𝑘A
−
2𝑒�ª:

𝑘�
+ 𝐶. 

(We only add the integration constant at the end, just to make the calculation less messy.) 

Exercise: Differentiate the above answer to check that it does indeed give 𝑥A𝑒�ª: . 
 
Integration by parts is a useful technique if the integrand obviously factorises into two simpler functions, one of 
which you know how to integrate.  However, it can also be applied in less obvious situations. 

Example: Evaluate ∫ ln 𝑥 	d𝑥. 
There is no obvious substitution that will help here, so we should consider integration by parts.  Although the 
integrand doesn’t seem to consist of two factors, we can make it so by multiplying by 1 to get ∫1 ⋅ ln 𝑥 	d𝑥. 

We don’t know how to integrate ln 𝑥 (obviously!), but we do know how to differentiate it, and ∫1	d𝑥 = 𝑥.  So 
we put ln 𝑥 = 𝑢 and 𝑥 = 𝑣, giving 

m1 ⋅ ln 𝑥 	d𝑥 = 𝑥 ln 𝑥 −m
𝑥
𝑥
	d𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶. 

Differentiating the answer gives  
d
d𝑥
(𝑥 ln 𝑥 − 𝑥) = ln 𝑥 +

𝑥
𝑥
− 1 = ln 𝑥 ,	

confirming that our integration is correct. 
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Integration and averaging 
An important application of integration, especially in 
quantum mechanics, is in finding the average of some 
variable. 

The relationship between integration and averaging can 
be seen in the plot on the right.  The integral of the 
function between x = 3 and x = 8 is the area under the 
solid red curve.  The value of the function averaged 
over the range x = 3 to x = 8 is the height of the dotted 
rectangle that will make its area equal to the area under 
the curve.  Therefore, since the area of the rectangle is 
𝑓̅ ⋅ (8 − 3), where 𝑓̅ is the average, we must have 

𝑓(̅𝑥v ≤ 𝑥 ≤ 𝑥A) =
∫ 𝑓(𝑥)d𝑥:¡
:¿
𝑥A − 𝑥v

, 

where 𝑓(̅𝑥v ≤ 𝑥 ≤ 𝑥A) is the average of 𝑓(𝑥) over the range from 𝑥v to 𝑥A. 

This makes intuitive sense.  We would calculate the average of N discrete points by writing 

𝑓̅ =
1
𝑁
Á𝑓(𝑥Â)
Ã

ÂÄo

. 

If our N points are equally spaced and span the range 𝑥v to 𝑥A, then the spacing between them is 	
d𝑥 = (𝑥A − 𝑥v)/𝑁, which means that we can write our average as 

𝑓̅ =
1

𝑥A − 𝑥v
Á𝑓(𝑥Â)d𝑥
Ã

ÂÄo

, 

and if we let d𝑥 → 0 this will become the integral expression we derived above. 

Problems for integration 
Here are some practice problems you might like to try.  We’ll distribute the solutions in Intro Week. 

1. Evaluate the following indefinite integrals: 

a.  ∫(𝑥 − 4)A	d𝑥   b. ∫ sin3𝜃 d𝜃  c.  ∫2:d𝑥   d.  ∫·𝑥 + v
:
¸
A
d𝑥   e.  ∫ 𝑒��:d𝑥   f. ∫ 3𝑥�º/Ad𝑥 

2. Use appropriate substitutions to evaluate the following indefinite integrals: 

a. ∫(tan𝜃 + cot 𝜃)d𝜃   b.  ∫ ¹:
: Å© :

   c.  ∫(2𝑥 + 5)� A⁄ 	d𝑥   d.  ∫  
A ¢¼

	d𝑡   e.  ∫  
A ¡¢¼

	d𝑡  f.  ∫ ¹ 
A ¢¼

 

3. Use integration by parts to evaluate the following indefinite integrals: 

a.  ∫ 𝑥𝑒�:d𝑥   b.  ∫𝑥A ln 𝑥 	d𝑥   c.  ∫ 𝑒�: cos 𝑥 	d𝑥   d.  ∫ Å© :
√:
	d𝑥   e.  ∫(𝑥A + 𝑥 − 2) sin𝑥 	d𝑥 

4. Evaluate the following definite integrals: 

a.  ∫ ¹:
√:¢º

º
o    b.  ∫ (3 − 2𝑥)��/Ad𝑥v

o    c.  ∫ cosA 𝜃 	d𝜃°
o    d.  ∫ ¹:

√��:¡
v
o    e.  ∫ :¹:

(�:¡�A)Æ
º
A    f.  ∫ sin� 𝜃 	d𝜃°

o  

5. Consider the following improper integrals.  State whether or not they are divergent, and evaluate them 
if they are not.    

a. ∫ 𝑒:	d𝑥v
�³    b.  ∫ 𝑥𝑒�:¡d𝑥³

�³    c.  ∫ 𝑒:	d𝑥³
o    d. ∫ ¹:

:
³
v    e.  ∫ ¹:

:¡
³
v  
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6. Over 10 seconds a car’s velocity is given by 𝑣o𝑡(𝑡o − 𝑡), where 𝑣o = 2 m/s and 𝑡o = 10 s.  What is the 
distance that the car has travelled (a) over the entire period of 10 s and (b) as a function of t?  (c)  Find 
the average speed of the car over the period 3.0 s <	t	<	5.0 s. 

7. A bar of material 1.700 m long and 1.00 cm2 in cross-sectional area has been constructed so that its 
density is given by 𝜌(𝑥) = 𝜌o/(5.0 + 𝑥), where x is the distance from the denser end of the rod in cm 
and 𝜌o = 25.0 g cm−2.   

a. Calculate the mass of the bar. 

b. If I wish to cut this bar into two pieces of equal mass, at what value of x do I cut? 

c. Recall that the position of the centre of mass of a system of masses is given by  

𝑀𝑹 =Á𝑚Â𝒓Â

Ã

ÂÄv

, 

where the ri are the position vectors of the masses mi, M is the total mass, and R is the position 
vector of the centre of mass.  This can be generalised to an integral 

𝑀𝑹 = m 𝒓	d𝑚
ÊË¹Ì

, 

where dm is the small element of mass at position	r.  Use this to find the centre of mass of the 
bar.  Explain why this is different from your answer to part b. 

 

  


