LANGMUIR WAVE DIAGNOSTICS THROUGH ZEBRA-STRUCTURE IN THE FLARE OF 4 APRIL 2011

1) northumbria

3) Sniversity
V.Zharkova1, N.Meshalkina², A. Altyntsev² , R.Dobranskis¹, D.Zhdanov² \&V.Fedun ${ }^{3}$ Instrumentation

* 256-element cross-shaped interferometer
\& antenna element 25 -meter parabolic, step - 4.9 mete
* baseline - 622.3 meter
\& central frequency -5731 MHz
\& receiving bandwidth -120 MHz
* angular resolution:
* 1-D mode (additive mode) - up to $15^{\prime \prime}$
* 2-D mode (correlation mode) - up to 21"
* stokes parameters recorded-1,
* time resolution:
* 1-D mode - up to 14 msec
* 2-D mode-up to 1 min
* sensitivity -0.003 s.f.u. (Grechnev et al., 2003)

Spectropolarimeter 4-8 GHz * time resolution 10 ms \& channels number 26 channel bandwidth $30-60 \mathrm{MHz}$ s sensitivity 2 SFU
(Zhdanov, Zandanov, GEAB, 2011)

5.7 GHz intensity (left) and polarisation
 The frame indicates the AR where the flare with zebra-pattern occurred. Since there are no displacements are no displacem

 measured by SSRT in two frequencies, so weassume that the source of the two zebra strips is located in the same site correspondent to the centre of the microwave burst. Size of the MW source is about 9 ".
Frequency gaps between the stripes Δf min-max Frequency gaps be
$[\mathrm{GHz}] 0.35-0.76$ Instant frequency width of a stripe $[\mathrm{GHz}] 0.17-1.02$

Fig. 2. (left) The exact position of zebra pattern location is shown by the blue cross in the image Fig.

Gemeration of Lanomuir waves av precioitading alections
Joint Fokker-Plank and wave difitusion equation Zharkova and Siversky, ApJ, 2011
Landau-Fokker-Plank equation for distribution of electrons f:
$\partial f / \partial t+u \partial f / \partial x-e \varepsilon / m_{e} u^{2} \partial / \partial u\left(f / u^{2}\right)=e^{2} \omega_{p}^{2} / \lambda / \partial h_{e}\left[f\left(\ln u / u_{e}\right) / u^{2}\right]+$
$+\pi \omega_{p} /\left[m_{e} n\right] \partial / \partial u(u W \partial f / \partial u)+4 \pi e^{4} n \ln \wedge_{b} / m_{e}^{2} \partial / \partial u\left(f / u^{2}\right)$,
Wave diffusion equation for distribution of waves W :

$\partial W / \partial t+3 u_{e}^{2} / u \partial W / \partial x=e^{2} \omega_{p}^{2}\left(\ln u / u_{e}\right) / u f+\pi \omega_{p} / n u^{2} W \partial f / \partial u$

$\pi e^{4} n \ln \wedge_{p} /\left[m_{e}^{2} U_{e}^{3}\right] W$,
where $n, U_{e}, \omega_{p}-$ density, velocity and plasma frequency of the ambient plasma, Λ_{b} and Λ_{p} are Coulomb logarithms for beam and plasma electrons, respectively.
electric field induced by a beam

Top left - HD model of atmosphere, top right - differential spectra of beam electrons with the initial flux of $1012 \mathrm{erg} / \mathrm{cm} 2 / \mathrm{s}, \mathrm{y}=3.5$. Bottom left - Langmuir wave distribution without return current Bottom right - Langmuir wave distribution with return (from Zharkova\&Siversky, 2011)

Ievira patien lootion on SOAA impere (lop) and IDI magnatogenan (botion)

4 April 2011. Overplotted images - top plot: white contours- SSRT 4 April 2011. Overpiotted images - top plot: white contours- SSR
intensity in 5.7 GHz black contours: - SSRT polarization in 5.7 GHz (dots (LCP) and solid line (RCP)). Background- SDO 304 A (06:28:57UT). Red cross in the right corner show the directions in EW u NS. The blue cross shows a position of the centre of microwave burst in intensity. It is assumed that the location of zebra structure coincides with the location of the blue cross.

Boittom plot: the same contours as above overplotted on MDI magnetogram taken at 06:27:30 UT. Since AR is located close to the limb, a procedure zradialize was applied for correction of magnetic field magnitudes, which reaches in the flare locations about 400 G (at the photosphere).

Generation of high frequency harmonics of Langmuit
waves by anomalous Doppler resonance with beam waves by anomalous Doppler resonance with beam electrons- Kovalev, Plasma Phys, 2009
$\omega+\omega_{\mathrm{B}}-\mathrm{k}_{\mathrm{x}} \mathrm{V}_{\mathrm{x}}=0, \omega_{\mathrm{c}} \omega_{\mathrm{B}}-$ gyrofrequency, V_{x} - e-velocity Governing equation:
$\left(d^{2} / \partial T^{2}+\omega_{1}^{2}\right)\left(d^{2} / \partial T^{2}+\omega_{2}^{2}\right) V=0$,
where
$\omega_{1} \approx \omega_{\mathrm{p}}^{2}+\omega_{\mathrm{B}}^{2} \sin ^{2} \vartheta, \omega_{2} \approx \omega_{\mathrm{B}}^{2}\left(1-\omega_{\mathrm{B}}^{2} / \omega_{\mathrm{p}}^{2}\right) \cos ^{2} \vartheta$.
$\vartheta-$ pitch angle of electrons
$\mathrm{V}=\mathrm{a}_{1} \exp \left(\mathrm{i} \omega_{1} \mathrm{~T}\right)+\mathrm{a}_{2} \exp \left(i \omega_{2} \mathrm{~T}\right)+$ complex conjugates,
or
$V=a_{1} \cos \left(\omega_{1} \eta / u\right)+a_{2} \cos \left(\omega_{2} \eta / u\right)$, where $\eta=x$-ut; $\mathrm{t}=\eta / \mathrm{u}$,
Electron density and electric field
$n_{e}=n_{i} /(1-V) ; \quad \phi_{\mathrm{T}}^{\prime}=4 \pi n_{i} e i\left[a_{1} / \omega_{1} \exp \left(i \omega_{1} \mathrm{~T}\right)+a_{2} / \omega_{2} \exp \left(i \omega_{2} \mathrm{~T}\right)\right.$
In the case $\mathrm{V} \approx 1$ there are many harmonics with close amplitudes exist with their number N defined as
$N=3 /\left(2^{3 / 2}\left(1-a_{2}\right)^{3 / 2}\right)$.
A number of harmonics is cut off after $s>N$, because only emission with frequencies $\Omega>=\omega_{p}$ can leave the volume.

If $a_{1} \rightarrow 0$ or $a_{2} \rightarrow 0$ then $N \rightarrow 1$
if $a_{2} \rightarrow 1$, ratio of amplitudes for $s=1,2,3$ is 1:0.8:0.7 \rightarrow $\mathrm{N}>200$
Near critical point $V \rightarrow 1$
If $a_{1} \approx a_{2}, N=>3$.
Space period of this electron wave is $L=2 \pi u / \omega_{2}$.
it defines a size of the change of denser layers with negative charge and rarefied layers with positive charge seen in simulated waves distributions on the left hand side.

If L is constant and a_{2} is increasing then the negative layer becomes narrower while the positive one becomes wider.

At $a_{2}=0.99$ electron density changes as $0.5<=n_{e} / n_{i}<=100$
The width of negative layer is about $0.24\left(\right.$ at $\left.n_{e} / n_{i}=1\right)$ and $6 \times 10^{-4}\left(\right.$ at $\left.n_{e} / n_{i}=50\right)$.

Uburst observation
 the bottom
-Dynamic spectra of polarimeter in 4-8 GHz.
-Temporal profiles built from the dynamic spectra at 5.7 GHz .
-Temporal profiles in the direction EW
$(5.76 \mathrm{GHz})$
-Temporal profiles of zebra pattern in direction NS (5.67 5.76 GHz).
-The bottom band of zebra pattern corresponds to the curve 1 order of NS (5.67 G -The top zebra band corresponds to the 2
order of NS (5.76 GHz)

The NS interferometer observed the 04 Apr 2011 flare region contemporary in two high-order fringes; thus, two 1D scans were recorded simultaneously within the two frequency intervals (orders) centered at about 5.67 and 5.76 GHz .

Fig. 7. Simulated MW spectral index (top), MW polarisation (middle) and MW intensity (bottom), viewing angles
110° (left) and $\quad 170^{\circ}$ (right)
Evaluation of flare and beam parameters
For the ambient plasma density in a flare of $10^{11} \mathrm{~cm}^{-3}, \mathrm{~T}=4.8 \times 10^{7} \mathrm{~K}\left(\mathrm{~V}_{\mathrm{T}}=3 \times 10^{9} \mathrm{~cm} / \mathrm{s}\right)$ and $\mathrm{B}=50 \mathrm{G}$ (close to the model), velocity of electron beam $\mathrm{V}^{*} \approx 10^{10} \mathrm{~cm} / \mathrm{s}(100 \mathrm{keV})$ the size of electron condensation caused by pinching is $\left(7 \cos ^{-1} \vartheta \ll L<70\right) \mathrm{cm}$.
Increment of these wave generation: $\quad \gamma=\left(\mathrm{n}^{*} / n_{\mathrm{j}}\right)\left(\mathrm{u} \mathrm{V}^{*}\right) \omega_{\mathrm{B}}{ }^{2} \cos ^{2} \vartheta$.
In flare with these parameters $y \gg v_{\mathrm{ei}}$ (v_{ei} - frequency of electron-ion collisions).
Let us evaluate the electric field $\phi_{\text {' }}$ in this wave.
lgnoring decay processes energy density of this wave $\mathrm{E}_{\mathrm{w}}=\left(\phi_{T}^{\prime}\right)^{2}$ max 14π should not exceed the thermal energy of the ambient plasma W_{T}.

$$
W_{T}=2 n_{i} k_{B} T \approx 10^{2} \mathrm{erg}^{2} / \mathrm{cm}^{3} ; \quad \rightarrow \phi_{\mathrm{T} \text { max }} \approx 10^{4} \mathrm{v} / \mathrm{cm} .
$$

Kinetic energy of accelerated electrons $\mathrm{W}^{*} \approx \mathrm{~N}^{*} m_{\mathrm{e}} \mathrm{V}^{* 2}$ is comparable with thermal energy only at densities of $\mathrm{N}^{*} \approx 10^{8} \mathrm{~cm}^{-3}$ (initial energy flux $F_{0} \approx 10^{11} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s}$).

This can be achieved if $a_{2} \approx 0.50(\mathrm{~N}=3)$. Only radiation with frequencies $\Omega>=\omega_{p}$ can leave the atmosphere, i.e. the emission at lower frequencies $s \omega_{2}<\omega_{p}$ cannot be emitted We observe only $\mathrm{N}=2$.

Two possible ways to see zebra patterns in MW emission:

1) Propagation through these patterns of the initial MW emission emitted from flaring
atmosphere during generation of Langmuir waves. Although the initial electromagnetic wave with amplitude lower than the potential wave does not affect the original EM wave.
2) Own emission of the plasma ambient plasma modulated by these non-linear waves in electron charge pinching producing from 1 to 200 patterns
Intervals $\Delta \Omega=\omega_{2} \approx \omega_{8} \cos \vartheta$, so that $\Delta \Omega / \Omega=1 / \mathrm{s}$. If $\omega_{\rho} / \omega_{B}=3$, we observe harmonics with $s>=3$. The ratio of components 3 and 4 should be $E(3) / E(4)=1: 0.7$.
U-burts reflect propagation of MW emission htrough negative charge patterns (Altyntsev et al, 2005).
References
Altyntsev et al, 2005, A\&A, 431, 1037; Kovalev, 2009, Plasma.Phys., 35, 1
Zharkova and Siversky, 2011, ApJ, 731,33, Zharkova et al, 2015 (in prep).
