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• MHD wave propagation in a magnetic flux tube with an internal twist
only.

• To go beyond cold plasma equilibria conditions the vertical magnetic
field inside and outside the flux tube are allowed to be different
(similarly to Ryutov and Ryutova (1976), Bennett et al. (1999),
Spruit, (1981, 1982); Edwin and Roberts, (1983), Goossens (2002),
Erdélyi & Fedun (2007, 2010) +++.

• In the framework of ideal MHD, we assume incompressible linear
perturbations and implement the thin tube approximation.

• We will focus on the analytical solutions related to modes with only
m ≥ 1.

Assumptions

Both inside and outside the tube the equilibrium magnetic field is given by

The geometry of the problem: a straight,
vertical, uniformly twisted magnetic flux
tube in an ambient magnetic field.

The governing wave equation for the linear 
radial component

An axially symmetric, vertical and magnetically twisted flux tube is a 
convenient model for analytical studies of various 
magnetohydrodynamic (MHD) perturbations



We start from the linearised ideal MHD equations (see e.g. Kadomtsev (1966); Priest (1982)) for the 
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We start from the linearised ideal MHD equations (see e.g. Kadomtsev (1966); Priest (1982)) for the 
displacement vector of a finite volume element. 

By assuming the time dependence of all perturbed physical quantities as

these equations can be written as

where

corresponds to the perturbed quantities

is the equilibrium plasma density

is the equilibrium plasma pressure

is the displacement 
vector

is the adiabatic index

is the angular frequency

is the equilibrium magnetic field

is the normalised magnetic field

is the perturbation of total plasma pressure

is the vector of curvature of magnetic field lines.

The governing wave equation for the linear 
radial component



Also we must satisfy the magneto-hydrostatic equilibrium

The governing wave equation for the linear 
radial component



Also we must satisfy the magneto-hydrostatic equilibrium

All equilibrium quantities depend on alone

The governing wave equation for the linear 
radial component



Also we must satisfy the magneto-hydrostatic equilibrium

All equilibrium quantities depend on r alone

We focus on all the modes with m ≥ 1, corresponding to non-axially 
symmetric oscillations which are the kink m = 1 and surface m > 1 
modes

The governing wave equation for the linear 
radial component



Also we must satisfy the magneto-hydrostatic equilibrium

All equilibrium quantities depend on r alone

We focus on all the modes with m ≥ 1, corresponding to non-axially 
symmetric oscillations which are the kink m = 1 and surface m > 1 
modes

For convenience we changed
and    components of    and    to 
The components directed along the 
bi-normal (subscript ) and along 
the magnetic field lines (subscript ):

The governing wave equation for the linear 
radial component



where

The governing wave equation for the linear 
radial component

This equation is equivalent to the well known Hain-Lüst equation (Hain & Lüst 1958)



where

The governing wave equation for the linear 
radial component

This equation is equivalent to the well known Hain-Lüst equation (Hain & Lüst 1958)

For incompressible perturbations :
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Boundary conditions
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Wesson (1978) study of stability of high-
temperature plasma

For the specific kink mode value of m = 1

The physical solution of this equation for a trapped
mode with shown above background magnetic
field bounded at and tending to as
as giv

The fact that obtained solution  is the same as for an untwisted tube is  interesting analytical result since previously 
Ruderman (2007), for example, only demonstrated this for the particular internal background magnetic twist



General dispersion relation for m ≥ 1 modes

Also, this result in an agreement with with the purely numerical study of Terradas & Goossens (2012) who solved the 
ideal linearised MHD equations in the zero-β regime

Terradas & Goossens (2012) found that the kink mode frequency in the long wavelength approximation was not 
affected by particular choice of a quadratic radial profile of
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General dispersion relation for m ≥ 1 modes

is the same as the kink mode in the thin tube approximation without 
twist. Therefore, the frequency and radial displacement are unaffected 
by the choice  of internal twist for the kink mode.
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For fluting modes with m ≥ 2 we will assume that inside the tube the magnetic twist 
varies linearly and outside it is zero

relation is invariant under the substitution 
(m, kz) → (−m, −kz), resulting in:
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Internal background magnetic twist with 

The frequency of fluting modes (m ≥ 2) given by this equation, in contrast to kink 
modes (m = 1), has a minimum value when

Ruderman (2007)

For all m ≥ 2 modes the eigenfunction has a form of power function and describes perturbations which 
are localised at the surface of the twisted magnetic flux tube.



Conclusions

• In the long wavelength limit, that both the frequency and radial velocity profile of the m = 1
kink mode are completely unaffected by the choice of internal background magnetic twist.

• Fluting modes with m ≥ 2 are sensitive to the particular radial profile of magnetic twist
chosen.

• Due to background twist, a low frequency cut-off is introduced for fluting modes that is not
present for kink modes. From an observational point of view, although magnetic twist does
not affect the propagation of long wavelength kink modes, for fluting modes it will either
work for or against the propagation, depending on the direction of wave travel relative to the
sign of the background twist.


